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This study examines the use of large language models (LLMs) for text
classification in economics. We investigate whether original instructions
can be effectively repurposed as prompts with moderate changes to achieve
classification results comparable to human-coded benchmarks. We clas-
sify text from four economic experiments on promises and strategic think-
ing. Covering tasks with varying complexity and prevalence in pre-training
data provides insights into how task characteristics influence classification
performance. We find that LLMs can accurately and cost-effectively clas-
sify text across tasks and replicate human annotations well. Our findings
offer guidance for integrating LLM-based text classification into economic
research.

Teaser: LLMs achieve performance comparable to humans in text classification using
prompts based on the codebooks written for humans.
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1. Introduction

Text classification organizes unstructured text into predefined categories and thus in-
creases the scope and depth of scientific insights. Across the social sciences, re-
searchers have long leveraged “text as data,” (Gentzkow et al., 2019) to gain insight into
decision-making, political discourse, media bias and more (Glavas et al., 2019; Capra,
2019; Nelson et al., 2021; Fyffe et al., 2024). However, its broader adoption is held
back due to the limitations of human annotation, which is costly, time-intensive, and
prone to subjective biases (Celebi and Penczynski, 2025). Machine learning methods
offer an alternative but come with their own limitations such as the requirement of clas-
sified training datasets for supervised learning (Georgalos and Hey, 2020; Penczynski,
2019; Hiining et al., 2022a) and the limited interpretability of unsupervised learning
(Grimmer and Stewart, 2013; Schmiedel et al., 2019). In contrast, large language mod-
els (LLMs) provide a cost-effective and flexible alternative, capable of classifying text
in data-scarce environments by inferring patterns from at most a few classified exam-
ples (Brown et al., 2020).

To effectively leverage LLMs as a text classification tool, we propose that a natu-
ral first step is to repurpose classification guidelines (codebooks) designed for human
annotators as prompts. This approach ensures standardization, continuity with prior re-
search, and better comparability with human classifications. Furthermore, it minimizes
the effort of transitioning from human to LLM annotators by eliminating the need to
devise prompts from scratch while keeping classification anchored in the definitions
and examples established by domain experts. Moreover, adhering to the original code-
books reduces the risk of ad hoc modifications to instructions and examples, which
could lead to overfitting.

Building on this approach, we introduce and apply a cross-task generalizable tem-
plate based on established prompt engineering standards (Reynolds and McDonell,
2021; Mishra et al., 2021a; White et al., 2023; Clavié et al., 2023; Yuan et al., 2023) to
ensure a structured adaptation for LLM use. The template retains the original codebook
content with only minimal to moderate formatting adjustments. These adjustments re-
duces structural and formatting variations across codebooks (Sclar et al., 2023) and
help to ensure that differences in LLM performance stem from task variation rather
than inconsistencies in prompt design, thereby enabling a more systematic and con-
trolled evaluation.

Our primary research question is therefore, can existing codebooks designed for hu-

man annotators be adapted with moderate modifications to serve as effective prompts



for LLM-based text classification (RQ1)?

Three of the four original codebooks we consider include classification demonstra-
tions, making the technique of n-shot prompting—providing a few classified examples
in the prompt—an inherent feature of our setup. This natural availability allows us to
systematically examine n-shot prompting’s effect on text classification (Brown et al.,
2020). Similarly, zero-shot Chain-of-Thought prompting (0-shot-CoT)—instructing
the model to generate intermediate reasoning steps before classifying—can be mod-
ularly incorporated into prompts without altering their structure or content, making it
another natural candidate for evaluation (Kojima et al., 2022). This raises the question,
how do n-shot and 0-shot-CoT prompting affect classification performance (RQ2)?

Furthermore, both techniques, along with the ability to closely follow instructions,
scale with larger models, which exhibit stronger reasoning capabilities and improved
learning from examples and category definitions (Mishra et al., 2021a; Ouyang et al.,
2022; Wei et al., 2022b; Lou and Yin, 2024). We therefore ask: how does model scale
affect classification performance and the impact of these prompting techniques (RQ3)?

In this study, we use GPT-3.5 and GPT-4 to classify text from economic experi-
ments and focus on two classification tasks: identifying promises () and levels of
strategic thinking (L). These tasks differ in their prevalence in the models’ pre-training
corpora—the text data used to train LLMs. Promise classification is likely to be more
prevalent in the training data, as the concept of a promise is intuitive, commonly used
in everyday language, and context-independent. By the same token, such a task can
arise in any social science domain. In contrast, levels of strategic thinking are a tech-
nical construct specific to behavioural game theory (Crawford et al., 2013), making
them less likely to appear frequently in pre-training corpora. As a result, the model is
more likely to recognize a promise based on its existing knowledge (recognition-heavy
task), whereas it is more likely to rely on category descriptions and examples to learn
classifying levels of strategic thinking (learning-heavy task) (Pan et al., 2023; Wang et
al., 2024a; Lampinen et al., 2024).

The two tasks (P and L) differ in the number of belief iterations performed by
the subject and reflected in the text. They also differ in the extent to which classi-
fication relies on symbolic reasoning—that is, reasoning grounded in a well-defined
formal system (see Sprague et al., 2024). Strategic thinking classification involves
semi-symbolic reasoning, as it draws on the level-k model of bounded rationality. In
contrast, promise classification does not rely on symbolic reasoning.

Lastly, classification difficulty also varies by experiment within each classification

concept (subscripts / and /7). In the promise classification, one experiment involves



stand-alone messages (F), while the other requires classifying multi-player conversa-
tions (Prr), where the model evaluates the full exchange to determine if a given subject
made a promise. In the strategic thinking classification, one experiment assumes a ran-
dom initial belief with up to three levels of strategic depth (L), while the other requires
the classification of the initial belief according to payoff or label salience, with a strate-
gic depth of up to five levels (L;;). Moreover, in the latter, the task requires identifying
both lower and upper bounds of strategic thinking rather than a single level.

These variations in task classification matter for performance and relate our results
to the prompt engineering literature, where the effectiveness of both 0-shot-CoT (re-
ferred to as CoT onwards) and n-shot prompting has been shown to be influenced by
task characteristics and model scale (Razeghi et al., 2022; Wu et al., 2023; Pan et al.,
2023). CoT improves performance in multi-step reasoning tasks (Huang and Chang,
2022), but its benefits diminish as task complexity increases (Zheng et al., 2023a;
Wang et al., 2023) or as reasoning sequences lengthen (Jin et al., 2024; Prabhakar et
al., 2024). Additionally, while CoT enhances performance in tasks requiring semi-
symbolic and symbolic reasoning, it negatively impacts those requiring non-symbolic
reasoning (Sprague et al., 2024). Moreover, CoT has been found to be more effective
with larger models (Wu et al., 2023) and less effective on task that are less prevalent
in the pre-training corpora (Razeghi et al., 2022). Similarly, n-shot prompting’s effec-
tiveness depends on task type, with performance gains plateauing in recognition-heavy
tasks, whereas in learning-heavy tasks, each additional example continues to contribute

to improvements (Pan et al., 2023).

2. Materials and Methods
2.1. Data

For the promise classification, we rely on benchmark labels distinguishing between
“promise” and “empty talk” in 38 messages from a principal-agent game (P, Char-
ness and Dufwenberg, 2006) and 717 chat instances involving 1,491 subjects from a
public goods game (FPr;, Arad et al., 2024). For strategic thinking classification, we
use existing labels from 493 messages in a jury voting game (L;, Celebi and Penczyn-
ski, 2023), which categorise messages into four levels of reasoning (level-0 to level-
3). The coordination games dataset (L;;, van Elten and Penczynski, 2020) contains
851 messages and features two classification layers: (1) identifying the type of salient
reasoning cue—no salience, label salience, or payoff salience—and (2) assessing the

level of strategic reasoning (level-0 to level-5). If a message contains label salience,



the model must classify its specific form as one of §, #, $, X, or Y, depending on
the game context. If it contains payoff salience, it must be further classified as either
“high” or “low”. The level classification in this dataset is not provided as a single point
label, but as a range indicating the lower and upper bounds of the subject’s inferred
reasoning level. All texts in P, Pr;, and L; are in English, while L;; is in German
(see Supplementary Materials C.1.1, C.2.1, C.4.1, and C.5.1 for details).

Accuracy is assessed based on agreement with human-annotated benchmarks. For
Py, this is sourced from Houser and Xiao (2011), whereas for P;;, L;, and Ly, it
comes from the same papers as the text data. In L;;, we report Jaccard accuracy to

account for its interval-based labels (see Supplementary Materials C.5.4 for details).

2.2. Prompts

All classification tasks were implemented via a standardized prompt template designed
to ensure consistency across tasks of varying complexity. As shown in Figure 1, each
prompt begins with a brief general task description and a role persona. The “General
task™ section primes the model by anchoring the task within familiar vocabulary (e.g.,
“classify,” “message,” “promise”), leveraging the model’s pre-trained recognition of
these concepts to improve performance (Mishra et al., 2021a). The “Role Persona”
section further guides the model’s reasoning style by embedding the task within a con-
textually appropriate domain identity—behavioural economist—a technique shown to
enhance output quality by activating the model’s learned associations with expert rea-
soning (Kong et al., 2023). The “Context” section provides an expert-level summary of
the experimental setup, decision process, and underlying theory, giving the model suf-
ficient vocabulary and conceptual scaffolding to interpret the messages (White et al.,
2023). The “Classification Task™ and, when applicable, “Examples” sections are drawn
verbatim from the original codebooks. Examples are only used in n-shot prompting;
similarly, a “Classification Process” section is added only for 0-shot-CoT prompting
and always consists of the same sentence shown in Figure 1, instructing the model to
provide a step-by-step explanation before classifying. Finally, the “Classification Cod-
ing,” “Constraint,” and “Output Format” sections ensure standardized outputs that can
be easily extracted using simple string matching. All prompts were written in Mark-
down format and all instructions were structured as itemized lists. Design rationale for
each section of the template, as well as for the overall formatting of the prompts, is
provided in detail in Supplementary Materials B.1, along with further references to the
relevant literature.

P; was evaluated only in a 0-shot setting, as its original codebook contained no



examples. For n-shot prompting, P;;, L;, and L;; were evaluated with 11-shot, 19-
shot, and 5-shot prompting, respectively, following the examples in their original code-
books. All four prompts used in this study are provided in Supplementary Materials
C.1.3,C.2.3,C4.3 and C.5.3.

TS

General Task
- Classify <X> in <E>

# Role Persona
— Act as a behavioural economist specialized in text
classification, concept <C> and game <G>

# Context

— <Game mechanics>

- <Experimental design/Decision Process>
— <Theory>

# Classification Task
- Classify <X> as <Y> given criteria: <Y;, Y, ...>

# Classification Coding
— Code <X> as <Z> if it is classified as <Y>

# Examples
- <Example text> <classification>

# Classification Process
- Provide a step-by-step reasoning before providing your
classifications.

# Constraint (s)
— Follow the below output format.

# Output Format
<Desired output format>

Figure 1: General Prompt Template

2.3. Model Choice

All classifications were performed using OpenAl’s GPT-4-preview-1106 and GPT-3.5-
turbo-1106 models. The decision to use proprietary rather than open-source models is
a central issue in current methodological debates. While open-source models promote
transparency and reproducibility (Spirling, 2023), proprietary systems remain widely
used and, under certain conditions, methodologically defensible (Palmer et al., 2024).

Researchers relying on closed models are therefore expected to justify their choice



explicitly (Palmer et al., 2024). Our justification proceeds along two lines.

First, our objective is to evaluate whether state-of-the-art LLMs can approximate
human-coded benchmarks. Since this involves assessing current performance limits, it
is methodologically appropriate to use proprietary models widely recognized as lead-
ing in the field (Palmer et al., 2024). This aligns with the “technical state of the art”
criterion introduced by Palmer et al. (2024), as including models with consistently
lower benchmark performance would not yield additional insight into our primary re-
search question (RQ1).

Second, as frontier models scale and broaden, their internal similarity structures
converge, and this alignment correlates with downstream task performance (Huh et al.,
2024). Accordingly, findings derived from one state-of-the-art model (GPT) are ex-
pected to generalize to models with comparable capabilities. This expectation applies
at the level of learned representations. However, differences in instruction fine-tuning
across different state-of-the-art models can yield model-specific responses, even when
representational structures are similar. For this reason, it is preferable to work with
a model family for which the literature provides the most comprehensive guidance
on prompt construction. Our standardized prompt template (see Figure 1) draws on
extensive experimentation in the computer science literature, which overwhelmingly
focuses on the GPT model family (see Supplementary Materials B.1). There is no
comparable body of work systematically evaluating prompt structures for non-GPT
models—whether open-source or proprietary. In the absence of such evidence, using
alternative models would require researchers to rely either on unpublished or limited
company-specific guidelines, or on best practices that have been validated primarily on
GPT models, without knowing whether they generalize. By contrast, our use of GPT
is anchored in a well-documented empirical literature, and the effectiveness of our
prompt template is indirectly corroborated by OpenAl’s own guidance, which aligns
with our design choices (MacCallum and Lee, 2025). Importantly, this guidance serves
not as a source of our template but as an independent validation of the structure we de-
veloped through prior literature. Using non-GPT models would necessitate extensive
ablation studies to assess whether our prompt template—or any other—improves or
degrades performance. By employing GPT, we leverage a robust experimental foun-
dation and avoid unnecessary duplication. This also positions our contribution at the
intersection of social science and computer science by adopting prompting strategies

rigorously evaluated in the latter.!

"'We acknowledge that the use of proprietary models raises reproducibility concerns. While we ensure
transparency by archiving all materials, future access to the specific model versions used remains
uncertain. In response, parts of the academic community have advocated for the development and



2.4. GPT Procedure

The full prompt was provided to either model as the system prompt, with the sub-
ject’s message to be classified supplied as the initial user input. Each classification
was conducted through a separate OpenAl API call. The temperature hyperparameter
was always set to 0. Such a setting reduces randomness and increases determinism in
model outputs, and thereby improves result reproducibility (see Supplementary Ma-
terials A.2 for further discussion). The max_tokens hyperparameter was adjusted
based on whether CoT prompting was used, and if so, according to the average length
of reasoning observed during testing for each prompt. All other hyperparameters were
left at their default settings. See Supplementary Materials B.2 for further details on the

procedure.

3. Results

PI PII LI LII

] 9 69 80 66
CoT 97 73 80 67
n-shot - 83 84 71
CoT & n-shot — 85 91 71

Table 1: GPT-4 accuracy (in %), highest values in bold.

Table 1 reports accuracy percentages for each task under different prompting tech-
niques, where @ represents a baseline without prompting techniques, and “CoT &
n-shot” represents both techniques applied. Notably, results under n-shot prompting
correspond to the prompts that most closely follow the original codebooks for P;;, Ly,
and L;;, while @ is closest for P;.

On average, promise classification outperforms strategic thinking classification (91%
vs. 81%), reflecting both the greater prevalence of promises in the model’s pre-training
corpora and differences in task complexity. The impact of complexity on model per-
formance is also evident within each classification type. In promise classification,

performance is significantly higher for stand-alone messages in FP; than for classi-

adoption of open-source alternatives (Spirling, 2023; Halterman and Keith, 2024). However, both
the development of such models and the experimentation required to identify prompt structures
that maximize performance are resource-intensive and environmentally costly. A more pragmatic
direction may involve collective efforts by the research community to secure long-term, stable access
to proprietary state-of-the-art models for academic use.



fying individual subjects within chat instances in F;;. Additionally, within P;;, we
analysed classification performance across different chat structures, distinguishing be-
tween monologues, dialogues, and trialogues. When both prompting methods were
present, monologues had the highest accuracy (90%), while dialogues and trialogues
had slightly lower accuracies (84% and 85%, respectively). Similarly, in strategic
thinking classification, accuracy is higher in L;, which involves fewer reasoning steps,
than in L;;, where the model must not only process more steps but also infer both

upper and lower bounds for levels of strategic thinking.

Result 1 Human annotator codebooks can be effectively repurposed for LLM-based
text classification across tasks that differ in underlying concepts, reasoning complexity,

and message format.

Table 2 presents the information of Table 1 in terms of the accuracy improvements
(in percentage points) of each prompting technique relative to the baseline &. With
the exception of P;;, CoT alone provides negligible improvements in classification

performance.

p[ PII LI LII

A CoT 1 4 0 1
A n-shot - 14 4 5
ACoT & n-shot — 16 11 5

Table 2: GPT-4 change in accuracy (in percentage points).

In contrast, n-shot prompting has a significant impact on performance improvement
across tasks, with the highest gain observed in P;;. This result is expected, given that
P; has the largest and most balanced set of classification examples (11 examples for
promises and 10 for empty talk across 11 chat instances). On the other hand, despite
n-shot prompting using nearly four times more examples in L; than in L;;, its impact
on accuracy remains similar across both tasks.

Combining n-shot with CoT yields the greatest accuracy gains, except in L;;. No-
tably, while CoT provides no benefit in Ly, it significantly enhances performance when
combined with n-shot. However, this synergy does not extend to the more complex

level-k classification task in L.

Result 2 n-shot prompting substantially and consistently improves classification ac-
curacy, while CoT’s impact varies by task. Yet, the highest performance is achieved

when both methods are combined.



Table 3 present GPT-3.5’s absolute baseline accuracy (@) in the first row, followed
by the relative accuracy improvements from each prompting technique in the subse-
quent rows. In small font, the change in accuracy compared to GPT-4 is reported
(Table 1).

PI PII LI LII

%] 76 20 58-11 70-10 52-14
A CoT 813 -3.18 -6-16 3.12
A n-shot - 3.2 5.9 6 -13
A CoT & n-shot — 330 -5 6 -13

Table 3: GPT-3.5 baseline accuracy (& in %) and change in accuracy (in percentage
pOil’ltS). Change in accuracy compared to GPT-4 (in percentage points).

The consistently negative improvements in small font show that the larger GPT-4
model outperforms GPT-3.5 across tasks and techniques. Unlike in GPT-4, the ef-
fects of CoT and n-shot prompting in GPT-3.5 are inconsistent. CoT only improves
performance in P; and L;; and negatively affects it in P;; and L;. Similarly, n-shot
prompting enhances performance in P;; and L;; but negatively impacts in L;. When
combined, CoT and n-shot provide no additional improvement over n-shot alone in L;

and L;;, while in P;;, CoT negates and reverses the gains from n-shot.

Result 3 GPT-4 consistently outperforms GPT-3.5. While both techniques generally
enhance performance in GPT-4, this is not the case for GPT-3.5. Larger models make
better use of CoT and n-shot prompting, leading to reliably higher classification per-

formance across prompting techniques.

Finally, we conclude our results by assessing whether we could do without detailed
classification instructions from the original codebooks. This is possible in the context-
independent promise classifications, where we test a simpler prompt that removes ex-
plicit classification criteria, excludes examples in P;; and keeps the rest intact. The
model is simply asked to classify whether a subject made a promise (see Supplemen-
tary Materials C.1.3 and C.2.3 for details). Table 4 presents the change in accuracy
relative to the original prompt.

Removing such classification instructions consistently lowers accuracy in GPT-4,
with a sharper decline in P; than in FPj;, regardless of CoT prompting. Conversely,
GPT-3.5 performs better with the simpler prompt, suggesting that detailed instruc-

tions may hinder rather than improve its performance. This is likely due to its weaker
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GPT-35 © 3 2
CoT 0 6
GPT4 o -12 -1

CoT -10 -1

Table 4: Percentage point change in Accuracy when not providing category definitions

instruction-following capabilities, where additional details introduce confusion rather
than clarity.

These findings highlight that detailed classification instructions—such as those pro-
vided in the original codebooks—are beneficial for GPT-4, leading to higher classi-
fication accuracy, while simpler prompts are preferable for GPT-3.5. This suggests
that as model capabilities improve, they become better equipped to leverage expert-
level, theory-grounded instructions, reinforcing the value of using structured code-

books when applying LLMs for text classification in research.

4. Discussion

This study examined whether classification codebooks originally designed for human
annotators can be adapted into effective LLM prompts with moderate modifications.
Our findings show that such adaptation is indeed viable: GPT-4 achieved high per-
formance across all tasks, replicating human annotations well using prompts closely
derived from original instructions. We view our results as encouraging any researcher
confronted with the discussed types of tasks to invest into LLM skills and to reserve
human annotation for random sampling validation.

Our findings also show that prompting techniques matter. While n-shot prompting
reliably improves classification accuracy, the benefits of CoT are more variable and
task-dependent. Moreover, these effects are model-sensitive: GPT-4 consistently ben-
efits from detailed instructions and n-shot examples, whereas GPT-3.5 displays erratic
responses to both techniques with CoT occasionally even offsetting gains from using
n-shot prompting.

Beyond accuracy, LLM-based classification is cost-effective and fast. Even in the
most complex case—L;; with CoT using GPT-4—100 messages were classified in 24
minutes at a cost of only $3.40, a cost that has since fallen fourfold. These efficiencies
underscore the potential for LLMs to lower the barriers to large-scale text classifica-

tion, providing an accessible alternative to traditional, labor-intensive methods.
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Original codebooks offer a natural and efficient starting point for constructing LLM
prompts, but they are not written with LLMs in mind and require editing to align with
principles of effective prompt engineering (Supplementary Materials B.1). One such
principle relates to the composition of examples, as the effectiveness of n-shot prompt-
ing is sensitive to the number, order, and balance of examples across categories (Pan et
al., 2023; Lu et al., 2021a; Zhao et al., 2021). In L;;, for instance, performance may
be improved by addressing category imbalances via additional examples in underrep-
resented classes (see Supplementary Materials C.5.3 for details).

Beyond prompt engineering, certain model hyperparameters, such as temperature,
should be set mindfully, in line with the task’s objectives. For text classification,
where consistency and replicability are essential, the model’s temperature should be
set to zero. This aligns with best practices in LLM research (Kojima et al., 2022; Wei
et al., 2022a; Kosinski, 2024; Kostina et al., 2025) and with OpenAl’s official rec-
ommendations for classification tasks (OpenAl, 2023a). A notable exception is the
self-consistency method in CoT prompting, where a positive temperature is used to
generate diverse reasoning paths, and classifications are aggregated across generations
to improve performance (Wang et al., 2022). However, if the goal is to assess model
consistency by repeatedly classifying the same text at positive temperatures—as done
in Gilardi et al. (2023); Tornberg (2023); Pangakis et al. (2023); He et al. (2024)—a
more cost-efficient alternative is to retrieve the model’s probability distribution over
classification categories (See Wang et al., 2021, for an application of the use of these
probabilities in text classification).

While our results show that LLMs can match human annotators in text classifica-
tion, we also observe a decline in model performance as task difficulty increases. To
maintain high accuracy in such relatively difficult cases—while minimizing the costs
associated with human annotation—researchers can leverage hybrid “algorithm-in-the-
loop” approaches, where human annotators intervene only when model confidence—
typically based on the aforementioned output probabilities—falls below a certain thresh-
old. This approach has been shown to improve performance, particularly in tasks
where the LLM alone underperforms relative to human annotators (Bansal et al., 2021;
Wang et al., 2024b; Vaccaro et al., 2024).

Lastly, researchers may encounter classification settings with longer input texts (e.g.,
news articles, legal documents) or more detailed codebooks than those used in our
study. Both cases lead to longer prompts, which may lead to performance degrada-
tion (Liu et al., 2024). To address these challenges, we suggest a “divide-and-classify”
strategy. This may involve segmenting long texts into smaller, coherent units or break-

12



ing multi-category codebooks into category-specific prompts, followed by an aggrega-
tion step. Decomposition strategies such as these have been shown to improve LLM
performance across a range of tasks (Patel et al., 2022; Mishra et al., 2021b; Khot et
al., 2022; Liu and Tan, 2023; Srivastava and Gandhi, 2024).
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A. LLMs and related literatures

An LLM is a statistical language model trained on a large corpus to predict the next
word for any given textual input. By inputting text instructions, one can strategically
leverage this predictive capability to steer the model’s output towards a desired out-
come, a practice commonly referred to as prompting. The appeal of prompting stems
from the ease with which natural language allows us to convey complex ideas. Yet, this
very flexibility may introduce inaccuracies or ambiguities if concepts are not clearly
defined or presented with insufficient context. The effectiveness of a prompt hinges
both on the user’s adeptness at crafting instructions with clarity and contextual rele-
vance, and on the model’s ability to accurately inferpret these instructions within their
context. While an LLLM’s capacity to process text and follow instructions are funda-
mentally based upon its pre and post training and its parameter size, for downstream
tasks, the user can still attempt to refine her mode of interacting with the LLM by en-
gineering her prompts to align more closely with model’s operational framework, in

order to effectively leverage its capabilities (Reynolds and McDonell, 2021).

A.1. GPTs in the computer science literature

FLAN (Wei et al., 2021), OPT (Zhang et al., 2022b), and PaLLM (Chowdhery et al.,
2023) are examples of LLMs that have showcased remarkable proficiency in natural
language understanding (NLU) tasks (Ye et al., 2023). Particularly, the Generative Pre-
trained Transformer (GPT) series (Brown et al., 2020), more specifically GPT-3 and
its subsequent iterations GPT-3.5, GPT-3.5-turbo, GPT-4 and GPT-4-turbo introduced
by OpenAl have sparked considerable attention due to their exceptional performance
in integrating various NLU tasks into generative ones (Ye et al., 2023).

Earlier GPT models, GPT-1 and GPT-2, are limited in their ability to recognise textual
patterns across diverse tasks due to their relatively smaller training corpus and param-
eter size (Radford et al., 2019). Consequently, these models require substantial fine-
tuning on task-specific datasets to achieve satisfactory performance. Yet fine-tuning
poses several problems: first, it requires large volumes of task-specific data; second,
there is a risk that these training datasets do not cover the full spectrum of task varia-
tions, which could lead to suboptimal performance on data not represented within the
training set (lack of generalizability due to over-fitting) (Brown et al., 2020). Further-
more, fine-tuning an LLM on data that introduces new knowledge is documented to
increase the model’s likelihood to make up information (hallucinate) (Gekhman et al.,
2024).
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Building on its predecessor, GPT-3 has been trained on a significantly larger corpus,
consisting of approximately 400 billion tokens, compared to GPT-2 which was trained
on 1.5 billion tokens (Brown et al., 2020). This extensive training has markedly en-
hanced its ability to detect diverse textual patterns (Brown et al., 2020) and has enabled
reasoning-like emergent qualities (Wei et al., 2022b). Notably, GPT-3 can perform
specialised tasks when provided with few examples demonstrating how to perform it
(Brown et al., 2020). This capability, which significantly reduced the need for pa-
rameter adjustments through fine-tuning, catalysed the development of the In-Context
Learning (ICL) paradigm for LLMs comparable in size to GPT-3 or larger (Dong et
al., 2022).

In the ICL paradigm, the process of demonstrating task execution through a small num-
ber of input-output pairs, where the input serves as the question and the output as the
answer, is referred to as n-shot prompting. In the specific case of classification tasks,
the term “n” indicates the number of examples provided in the prompt. n-shot prompt-
ing quickly gained popularity as it requires only a few demonstrations to guide the
model toward achieving performance comparable to that of fine-tuned models trained
on extensive datasets. Notably, a single demonstration can be as effective as fine-tuning
the model with approximately 300 to 3,500 input-output pairs, depending on the task
(Scao and Rush, 2021). Additionally, by modifying the format of the demonstrations
from <input, output> to <input, reasoning, output>, one can enable the model to
demonstrate reasoning capabilities. This approach, referred to as n-shot-CoT (Chain
of Thought), has proven to significantly enhance the models’ performance, especially
on more involved tasks that can potentially benefit from multi-step reasoning (Huang
and Chang, 2022).

Although the ICL paradigm offers a flexible and data-efficient way to “teach” the
model at inference, the efficacy of the method on improving the model’s task per-
formance, or in other words the model’s ability to “learn” from these demonstrations,
relies to a greater extent on the choice of examples, the sequence in which they are pre-
sented within the prompt, and the frequency with which examples for each category to
be classified are provided (Lu et al., 2021b; Kumar and Talukdar, 2021a; Zhao et al.,
2023). Although various methods to select the optimal set of examples and their or-
der have been proposed, and documented to improve the model’s performance (Li and
Qiu, 2023a; Su et al., 2022; Liu et al., 2021; Luo et al., 2023; Chang and Jia, 2022),
their technically demanding procedures may be less accessible for social scientist to
implement. This lack of accessibility juxtaposes with the appeal of GPT’s out-of-the-

box usability, which we believe is necessary for any prompting method to be widely
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adopted by social scientists.

Given n-shot-CoT prompting is an extension to n-shot prompting, its effectiveness
in enhancing the model’s task performance also relies on the choice and order of ex-
amples. In addition, however, its effectiveness is also dependent on the manner with
which the rationales are provided for each demonstration (Huang and Chang, 2022).
To improve the reliability of n-shot prompting, the most cited method is the “self-
consistency” method proposed by Wang et al. (2022). In this method, the temperature
hyperparameter is set to a strictly positive value (e.g. 0.5 or 0.7) in order to increase
the variability in the reasoning sequence of the output, and multiple request (e.g. 20 or
40) to the model are made using the n-shot-CoT method for every single task instance.
Then the most frequently outputted answer is picked as the decisive (consistent) output.
Noting that requesting a reasoning prior the answer already puts additional token cost,
by generating k£ many outputs with reasoning for each task instance, “self-consistency”
method is increasing the computational cost approximately & times more. Making the
classification task approximately & times more costly to improve the reliability of the
model’s output could make this approach prohibitively expensive for social scientists,
and potentially deter them from viewing it as a viable alternative to human annotators.
To refine the reasoning provided with each examples, it has been suggested, among
many, to use multiple human annotators to provide a diverse set of reasoning for each
example (Li and Qiu, 2023b), to use the LLM itself to generate a diverse sets of rea-
soning for each examples and then select the reasoning with the most steps (Fu et
al., 2022), or to generate multiple outputs using the generic n-shot-CoT prompting
method and to choose the most frequently provided output as the final output of the
model (Wang et al., 2022) (see Huang and Chang (2022) for details and other meth-
ods to refine the rationale). Arguably, although these proposed methods for refining
the reasoning in demonstrations are not computationally demanding, they still require
careful selection of the most suitable reasoning for each example, and may lead the
researchers to doubt whether the explanations considered were adequate, particularly
when the model’s performance does not meet their expectations.

In addition to the unreliability concerns with n-shot and n-shot-CoT prompting, it is
also unclear how the model “learns” at inference to perform a task via few demonstra-
tions of the task, and whether it genuinely learns via demonstrations (Reynolds and
McDonell, 2021). Min et al. (2022) demonstrate that even when the output labels of
the input-output pairs in n-shot prompts are replaced with incorrect labels, the model’s
performance remains unaffected. They suggest that models do not learn from demon-

strations in the same way humans do from examples; rather, these examples primarily
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serve to delineate the label space and the distribution of the input text, thereby aiding
the model in task execution?. Reynolds and McDonell (2021) argue that demonstra-
tions do not actually “teach” the model how to perform the task but simply enables the
model to locate the tasks in the model’s existing knowledge of tasks that it acquired
during its pre-training® (meta-knowledge). Similarly, with n-shot-CoT prompting, it is
unclear whether the model genuinely engages in reasoning and, if so, how this reason-
ing improves the task performance (Madaan and Yazdanbakhsh, 2022). Furthermore,
the ability of a model to reason effectively has been shown to correlate with the fre-
quency of a task’s presence in its pre-training corpus: the more frequently a task is
represented in the training data, the more likely the model is to exhibit sound reason-
ing and produce accurate outputs (Razeghi et al., 2022).

Given the aforementioned challenges with n-shot-CoT method, a notable, demonstration-
free alternative is the 0-shot-CoT prompting method (Kojima et al., 2022). This ap-
proach simply involves appending the phrase “Let’s think step-by-step” to the instruc-
tions and thereby triggers a reasoning process before generating the output. 0-shot-
CoT, devoid of the reliability concerns regarding the selection of examples or the
quality of reasoning, is task-agnostic and can seamlessly be integrated into an exist-
ing prompt by adding the keyword “think step-by-step” into the specific sections of
the instructions where the user wishes to invoke reasoning steps in the model (Ope-
nAl, 2023b). While 0-shot-CoT has been shown to significantly enhance performance
across a range of tasks, its efficacy diminishes with relatively more involved tasks that
potentially requires an explicit outline of the reasoning steps to be followed by the
model. In such scenarios, the method often yields suboptimal outcomes due to the
model’s failure to accurately execute or complete the necessary reasoning steps, either
by omitting steps or by making errors within specific steps of the reasoning process
(Zheng et al., 2023b; Wang et al., 2023). Consequently, alternative 0-shot reasoning-
invoking methods have been proposed to address these limitations (Huang and Chang,
2022). Furthermore, 0-shot-CoT’s effectiveness is similarly influenced by the model’s
pre-training corpus. Tasks less represented within the training corpus is observed to

provide diminished performance improvements when the method is integrated. This

2Yoo et al. (2022) revisited the assertions of Min et al. (2022) and found instances where employing
incorrect output labels adversely affects model performance. Consequently, the question of whether
and how models learn from demonstrations, and precisely what they learn, remains an open question.

3 As a consequence, In-Context learning is also referred to as priming (Webson and Pavlick, 2021). Yet,
the term priming encompasses a broader spectrum of prompting techniques. For instance, priming
can also be done by pre-pending a prompt with a series of token (instead of or in addition to the
input-output demonstration pairs) that do not necessarily make intuitive sense (Kumar and Talukdar,
2021b).
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highlights, once again, the dependency of the model’s performance on the attributes of
its training corpus (Wu et al., 2023).

OpenAl has progressively enhanced GPT-3 by fine-tuning on a collection of instruction-
answer pairs* (Ouyang et al., 2022). These improvements enabled the model to more
closely follow instructions, and reduced to a considerable degree the need to instruct
the model to perform a task via demonstrations (Chung et al., 2022). Consequently,
recent literature has begun to emphasise the instruction learning paradigm which shifts
focus from learning through demonstrations to learning via instructions (Lou and Yin,
2024). It’s worth noting that this paradigm does not preclude the inclusion of demon-
strations within the instructions; rather, it puts more weight on structuring and de-
signing prompts that combine instructions and examples to optimise the model’s per-
formance (Lou et al., 2023). There are only a few studies that aim to provide cross-
task generalizable prompt design tips intended to enhance demonstration-free instruc-
tions to be considered in prompt engineering (Mishra et al., 2021a; Reynolds and Mc-
Donell, 2021; Mishra et al., 2021b; Gu et al., 2022; White et al., 2023; Peskine et al.,
2023). Additionally, as of writing of this paper, only a single paper has systemati-
cally explored various instructional prompting techniques across a wide range of tasks
and documented each instructional design component’s contribution on improving the
model’s performance (for a more detailed discussion and the application of these de-
sign choices, see Section B.1) (Mishra et al., 2021a).

The concept of instructing an LLM in a manner akin to how one might instruct a
human is appealing because it renders the act of prompting both intuitive and flexi-
ble. Furthermore, prompting via detailed instructions, free of examples, circumvents
various methodological issues inherent with the ICL paradigm. Yet, the availabil-
ity and diversity of instructions in the training corpus of the model is also observed
to be a determinant factor on the effectiveness of 0O-shot instructions on improving
the model’s performance. When instructions tailored for human annotators (such as
mTurkers on Amazon Mechanical Turk) are considered verbatim as prompts to assess
the model’s ability on following human-tailored instructions (turking test), the smaller
GPT-2 model has demonstrated poor performance(Efrat and Levy, 2020), while the
larger GPT-3 model, when fine-tuned on a large set of human-tailored instructions,

has demonstrated the ability to effectively follow unseen human-tailored instructions

“Fine-tuning GPT-3 to better follow instructions resulted in the development of GPT-3.5 (Ouyang et
al., 2022). GPT-3.5 was then further fine-tuned using reinforcement learning from human feedback
(RLHF) method to further enhance its capacity to understand instructions and to better engage in
conversational interactions with its users (Ye et al., 2023). These advancements led to the creation
of GPT-3.5-Turbo, the underlying model of the ChatGPT application.
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(Mishra et al., 2021a; Ouyang et al., 2022). Moreover, human-tailored instructions
are documented to outperform basic prompts that instruct the model with one or two
sentences devoid of any additional descriptive context for categories (Mishra et al.,
2021a). In brief, irrespective of how well instructions are constructed to improve the
model’s performance, the size of the model and whether the model was fined-tuned on
instructions are observed to play a major role in the model’s performance; and if the
model is fine-tuned on instructions, then using instruction provides an improvement
over the performance of the model.

Similar to the ICL paradigm, where it is uncertain whether the model genuinely learns
from demonstrations, it is also unclear whether the model truly grasps the task’s con-
text and execution conditions from a set of 0-shot instructions (Webson and Pavlick,
2021). If the model truly learns from instructions, variations between two different
sets of instructions that convey the same meaning should not affect its performance.
However, it has been observed that, without sufficient fine-tuning on task-specific ex-
amples, changes in word choices that preserve semantic textual similarity in 0-shot
instruction prompts can impact model performance as significantly as training it with
an additional 200 task-specific examples (Puri et al., 2022). On the other hand, when
the model is fine-tuned with a large collection of task-specific examples, its perfor-
mance demonstrates robustness to variations in the wording of the instructions (Puri
et al., 2022). These results, on the one hand, demonstrates the importance of provid-
ing carefully designed instructions, while, on the other hand, hints at the fact that the
model does not only learn from a set of instructions but also leverages the provided
descriptions to locate the task on its existing knowledge. Lastly, demonstrations and
carefully provided descriptions for each classification category are observed to com-
plement each other. Irrespective of whether the model is sufficiently trained on task-
specific instructions, when instructions are supplemented with a few demonstrations,
the model’s performance is observed to remain stable despite variations in the choice
of words and phrases (Gu et al., 2022).

A recurring theme in our discussion of various prompting techniques is that the effec-
tiveness of any such technique in enhancing a model’s performance largely depends on
how well the task’s contextual components are represented in the model’s training cor-
pus. Certain elements of any given task might already be familiar to the model, while
others may be novel. This distinction categories any given task as either a recognition
task, where the model identifies elements it has seen before, or as a learning task, where
the model encounters new contextual elements. Through a series of carefully designed

experiments, Pan et al. (2023) demonstrate that the marginal effect of additional task
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examples in a prompt diminishes for recognition tasks, since only a few examples are
observed to be sufficient for the model to recognize the task, and any additional exam-
ples do not enable the model to “further recognize” it. Conversely, for learning tasks,
the effect of additional demonstrations is observed to be somewhat linear, with each
additional example helping the model grasp more of the task’s contextual nuances a
bit more. Another distinction between recognition and learning tasks identified by Pan
et al. (2023) is the scale of the model®. The model size is observed not to significantly
enhance its performance on recognition tasks, whereas it is observed to be a crucial
factor for the model’s ability to learn from demonstrations when faced with a novel
task (Pan et al., 2023). This observation is supported by Wei et al. (2022b), who argue
that as the model scales, it acquires an emergent capability to learn from the exam-
ples. Lastly, it is important to note that any given task may consist of subtasks that fall
into two either recognition or learning task category. Furthermore, certain contextual
elements of a task might be categorised as learning tasks, while others are more appro-
priately considered as recognition tasks. Thus, both the size of the pre-training corpus
and the scale of the model are potentially crucial factors that impact the performance
of the model for a given task. Yet this impact may vary depending on the proportion
of recognition to learning components within the task.

Consequently, recognising that the impact of prompting techniques on model per-
formance can vary significantly with each specific task is crucial, as this variability
necessitates a case-by-case investigation of the effectiveness of different prompting
techniques and model configurations. Therefore, it is unreasonable to universally gen-
eralise that one prompting technique or a model with a larger training set or more

parameters will consistently perform better across all tasks.

A.2. GPTs in the social science literature

In Table S1, we compile a selection of studies that explore the annotation capabilities
of various GPT models. Although this list is not exhaustive, it effectively showcases
the diverse prompting techniques used by researchers in a range of annotation tasks
within the social sciences.

Despite well-established guidelines from computer science literature, there is a notice-
able oversight in the related social science literature with respect to the integration of

various prompting strategies such as instruction learning, n-shot prompting, 0-shot-

3The scale or size of a model refers to the number of parameters in its neural network. Largest GPT-2
model has approximately 1.5 billion parameters (Radford et al., 2019) while GPT-3 has approx-
imately 175 billion parameters (Brown et al., 2020), and although not exactly known, GPT-4 is
estimated to have over 1 trillion parameters (Baktash and Dawodi, 2023).
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Table S1: Papers in Social Sciences

Paper Field GPT Temp. Prompt Shot CoT
Rytting et al. (2023) Poli. Sci. 3 ? Structured* 2,3
Chae et al. (2023) Poli. Sci. 3 0 Basic* 0,1,2
Reiss (2023) Poli. Sci. 3.5 0.25,1 Basic’, 0
Gilardi et al. (2023) Poli. Sci. 3.5% 0.2,1  Original 0
Zhu et al. (2023) Psychology  3.5* ? Basic 0
Poli. Sci.
Lietal. (2024) Poli. Sci. 3.5* 0,1 Original 0 ~
Basic*
Zhang et al. (2022a) Poli. Sci. 3.5* ~ (0.7 Basic 0
Aiyappa et al. (2023) Poli. Sci. 3.5* ~ 0.7 Basic 0
Kuzman et al. (2023) Linguistics ~ 3.5* ~ (0.7 Basic* 0 ~
Zhong et al. (2023) Linguistics ~ 3.5* ~ (0.7 Basic* 0,1,5 v
Amin et al. (2023) Psychology  3.5* ~ 0.7 Basic 0
Bhat et al. (2023) Psychology  3.5* ~ 0.7 Basic 0 ~
Linguistics
Poli. Sci.
Heseltine et al. (2024)  Poli. Sci. 4 ~ 0.7 Basic* 0
Tornberg (2023) Poli. Sci. 4 0.2,1 Basic 0
Pangakis et al. (2023) Psychology 4 0.6 Original* 0
Linguistics
Poli. Sci.
Original &
Savelka et al. (2023) Law 4 0 Structured* Y v
He et al. (2024) Linguistics 4 0.2,1  Original 0
Rathje et al. (2023) Psychology 3.5*,4* 0 Basic* 0,1
Matter et al. (2024) Sociology  3.5*,4* 0.1 Basic* 0 ~
Ziems et al. (2024) Psychology 3.5",4 0 Basic 0,1
Linguistics
Poli. Sci.
Basic,,
Our Paper Economics 3.5%,4* 0 Original & 0—-19 Vv
Structured*

Notes: The “Field” column represents the broad field under which the annotation tasks can be categorized. In the “Model”
column, the asterisk indicates that the turbo version of the model is used, and the tilde indicates that the model is not leveraged
via the API but through the ChatGPT platform. In the “Prompt” column, “Basic” indicates a basic instructions to classify a
text, “Basic” indicates a basic instruction accompanied by a short definition of for each category, *“ Original” indicates that the
original human instructions are used verbatim as the prompt, and “Structured’ indicates that a prompt template is used to structure
the prompt into distinct components such as instructions, context, definitions, examples and so on. Moreover, in the “Prompt”
column, asterisk superscript indicates that the study investigated either to improve the model’s performance via restructuring
or augmenting the prompt through rephrasing, incorporating additional context or definitions, making the instructions more
precise, etc. or to investigate the effect of a specific variation on the prompt such as considering the prompt in an other language,
instructing the model to output a non-binary classification, etc. The “Shot” column indicates the number of demonstrations
used in the prompt (n-shot prompting). The “Temp.” column indicates the temperature parameter(s) used for the respective
model(s), question mark indicates that this value is not provided in the respective paper. Moreover, the exact temperature value
for ChatGPT is not known and 0.7 the unconfirmed yet commonly assumed value for it. The “CoT” column not only indicates
whether the study used some form of chain-of-thought prompting technique (v") but also points out studies that considered asking
for an explanation after the classification is done (~) either as an attempt to improve the performance or to further investigate
the outputs provided.
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CoT, and the proper usage of the temperature hyperparameter. Our aim is to provide
insights relevant to our current work and highlight methodological oversights such as
the misuse of the temperature hyperparameter (Reiss, 2023; Tornberg, 2023; Gilardi et
al., 2023; Pangakis et al., 2023; Matter et al., 2024; He et al., 2024; Li et al., 2024), mis-
use of 0-shot-CoT (Zhu et al., 2023; Kuzman et al., 2023; Li et al., 2024), classifying
messages in batches (Zhang et al., 2022a; Amin et al., 2023; He et al., 2024; Heseltine
and Clemm von Hohenberg, 2024; Matter et al., 2024), and using chatGPT rather than
the underlying GPT model (Zhang et al., 2022a; Kuzman et al., 2023; Zhong et al.,
2023; Amin et al., 2023; Bhat and Varma, 2023; Heseltine and Clemm von Hohen-
berg, 2024). If unaddressed, these oversights could compromise the perceived utility
of LLMs in text annotation tasks and could misdirect the literature towards subop-
timal prompting practices. Moreover, certain papers are often cited for their claims
that GPT models are unreliable in text annotation tasks, yet their conclusions rest on
methodologically questionable practices (Reiss, 2023; Savelka et al., 2023). Mean-
while, other papers advocate for the adoption of specific prompting methodologies, but
these recommendations either lack clarity (Pangakis et al., 2023), or show inconsisten-
cies between proposal and practice (Ziems et al., 2024). Consequently, it is crucial to
examine these studies more closely to ensure that they do not mislead future research
or get perpetuated uncritically in subsequent works.

In Table S1, under the “Prompt” column, the “Basic” tag is used for studies that employ
a very basic prompt format such as “Classify X as Y7, Y5, Y3, ...”. We labeled slightly
more involved basic prompts as “Basic,”. These prompts either provide additional
context for the task, “Given context C, classify ...”, invoke a specific persona from the
model “Act as I? and classify ...”, or offer explanations for each classification cate-
gory, “Classify X as Y7, Ys, ... where Y; :< description >, Y5 :< description >, ...
. The “Structured” tag is assigned to prompts that imposes a structured template that
organises explanations, context, constraints, demonstrations and additional prompting
techniques into modular components via textual cues such as titles or delimiters. The
“Original” tag is assigned to prompts that verbatim use instructions tailored for human
annotators. Consequently, using this tag in conjunction with the “Structured” tag in-
dicates that the original instructions have been reframed and restructured for its use as
a prompt, and a markup language is leveraged to impose this structure. All the papers
with a “Structured” tag in Table S1 used the Markdown language to structure their
prompts. Lastly, the superscript “*” is used to denote studies that explored variations
on their initial prompts to enhance model performance either by rephrasing, adding

further information, simplifying existing descriptions or using established prompt en-
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gineering techniques such as CoT.

A major determinant of a model’s task performance is the nature of the task itself,
which can be considered under two main dimensions: the representational depth of
task-specific categories in the model’s pre-training corpus and the complexity of the
task. Representational depth reflects the frequency and variety with which the cate-
gories to be annotated are represented in the training corpus. A greater representa-
tional depth ensures that the model is exposed to a wider range of conceptual diversity
for given a category which, in turn, impacts the model’s recognition and learning ca-
pabilities from provided demonstrations or descriptions for a given annotation task
(Reynolds and McDonell, 2021; Razeghi et al., 2022; Pan et al., 2023). Zhu et al.
(2023) document that GPT-3.5 performs relatively poorly when tasked with classify-
ing topics that occurred after its training, such as the Ukraine-Russia war. In a similar
vein, for GPT-4, Ziems et al. (2024) report strong performance in tasks involving cate-
gories common in everyday conversations, such as “anger” in an emotion recognition
task, while in tasks requiring expert knowledge and involving non-conventional cate-
gories, such as “white grievance” in hate speech classification, GPT-4’s performance
is notably weaker.

From an information perspective, a task that requires a more diverse set of informa-
tion is considered more complex (Liu and Li, 2012). Complexity can also be defined
by the level of abstraction necessary and the extent of inferential reasoning needed to
effectively interpret and act on information (Yang et al., 2016). For example, while
utterance-level classification involves analysing individual statements, conversational-
level classification should be considered as more complex as it requires understanding
the broader context and dynamics within entire dialogues (Arad et al., 2024). Similarly,
analysing court opinions to interpret legal concepts (Savelka et al., 2023) or classifying
nth level strategic thinking in jury voting (Celebi and Penczynski, 2023) involves far
more complex cognitive processes than identifying promises (Charness and Dufwen-
berg, 2006). This increased complexity necessitates a model that not only understands
expert specific information but also integrates and reasons about it in a manner that em-
ulates higher-order cognitive processes (Huang and Chang, 2022). For instance, Bhat
and Varma (2023) investigate the annotation performance of GPT-3.5 across three tasks
of varying complexity and find that the model performs poorly with linguistically more
challenging task of news category classification (51% average accuracy) compared to
sentiment analysis (84% accuracy). Similarly, Savelka et al. (2023) observe poor GPT-
4 performance in the task of analysing court opinions to interpret legal concepts (46%

average accuracy) yet this performance is found to be still on par with expert level
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annotators. Lastly, Ziems et al. (2024) document that as the complexity of the text
increases, moving from standalone messages to conversational texts, the performance
of both GPT-3.5 and 4 models deteriorate in classification tasks. In sum, the results
corroborate that the performance of GPT-3.5 and GPT-4 models are shaped by both
the depth of representational coverage in their training data and the complexity of the
tasks they are assigned.

An additional aspect of representational depth is the linguistic diversity within the
model’s pre-training corpus. While specific details are often undisclosed, it is widely
inferred that the primary training data for GPT-3.5 and GPT-4 consist predominantly
of English texts (Lai et al., 2023). The limited representation of multilingual data
can in turn cause models’ performance on annotation tasks to deteriorate primarily
on under-represented language families with a syntactic order in the form of Subject-
Object-Verb (SOV, e.g., Hindi, Turkish, Arabic or Amharic) compared to the family
of languages with syntactic order in the form of Subject-Verb-Object (SVO, e.g., Ger-
man, Italian, Spanish or Slovenian) that English is a part of (Bjerva et al., 2019). This
is because variations in syntactic order alter the word inter-dependencies crucial for
models’ language comprehension (Bender, 2011; Nivre et al., 2016). These structural
differences result in unique word co-occurrence patterns and grammatical dependen-
cies that LLMs, primarily trained on English, rely on to infer the semantics of the
text. Consequently, GPT models may face greater difficulties in effectively process-
ing the semantics in language families with syntactic structures distinct from English,
while languages with a similar syntactic order, such as German, may present fewer
challenges (Conneau and Lample, 2019). In practice, Heseltine and Clemm von Ho-
henberg (2024) find that GPT-4 demonstrates consistent performance across tasks in
German, Italian, and Chilean Spanish compared to English. Conversely, Bhat and
Varma (2023) observe that GPT-3.5 struggles with Indic languages, although it was
not tested against English texts to ascertain if the prompts would have fared better in
English. Rathje et al. (2023) report that GPT-3.5-turbo and GPT-4-turbo show com-
parable performance in Turkish, various African languages®, and Arabic. Kuzman et
al. (2023) document that while Slovenian texts are classified as effectively as English
texts by these models, prompts in Slovenian yield poorer results compared to their
English counterparts. The empirical findings largely corroborate the theoretical expec-

tations that various GPT models perform better with languages syntactically similar

6 African languages display diverse syntactic structures across several language families. The Niger-
Congo family mainly uses SVO order, similar to English, but variations like SOV are found in some
Bantu languages. Nilo-Saharan languages typically feature SOV order, with dialectic variations
(Vossen and Dimmendaal, 2020).
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to English, as observed with German, Italian, and Spanish. However, the comparable
performance in SOV languages, like Turkish or Arabic, suggests that the models have
the capability to effectively adapt to diverse linguistic structures.

The 0-shot improvement technique of providing context and label descriptions on a
“Basic” prompt is shown to improve the classification performance of the models (Pe-
skine et al., 2023). Chae and Davidson (2023) initially consider a simpler prompt than
the “Basic” prompt to instruct GPT-3 to classify political stance of Twitter messages
with the prompt “Stance:”. This method led the model to incorrectly output labels as-

99 ¢

sociated with sentiment classification (“positive”, “negative”) rather than the intended
stance labels (“support”, “oppose”). Consequently, they opted for the “Basic” prompt
to ensure the correct classification labels, and then tested two incremental improve-
ments on the “Basic” prompt: first, by adding a statement indicating the potential
expression of a stance, and second, by providing a general definition of what “stance”
entails. These modifications improved the prompt’s performance by 11%. Similarly,
Heseltine and Clemm von Hohenberg (2024) started with a “Basic” prompt and en-
hanced it by adding a single-sentence description for each category, which on average
boosted the model’s performance by 8% across different tasks.

The 0-shot improvement technique of reframing instructionsaby clarifying category
definitions or making existing instructions more preciseahas been shown to enhance
model performance (Mishra et al., 2021b). For example, Savelka et al. (2023) began
with an “Original Structured” prompt but found that overly broad category defini-
tions hindered classification performance. By refining these definitions, they improved
model accuracy by an average of 28% across multiple prompts.

Matter et al. (2024) started with a “Basic” prompt that included three main labels (ex-
plicit violence, implicit violence, and non-violence) and subcategories for violence
cases. After testing on a subset of the dataset, they enhanced the prompt by adding
brief descriptions for each category. They then further refined the prompt through iter-
ative testing on new subsets, using GPT-generated text to address observed misclassi-
fications. The final prompt included category-specific descriptions and two examples.
Although they report substantial performance gains, the absence of evaluations on the
full dataset means the magnitude of each refinementés contribution remains unclear.
Moreover, the rationale for providing additional clarification to only a subset of the
categories is not explicitly discussed.

A related approach is proposed by Pangakis et al. (2023), who iteratively compared
GPT classifications to human annotations on randomly selected subsets. When the

model’s output substantially divergedathough no threshold was definedathey adjusted
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the prompts and repeated the process until the results were deemed “satisfactory”.
While the procedure reportedly improved performance, specific metrics for improve-
ment or details of the intermediate prompts were not provided, limiting reproducibility.
Although Matter et al. (2024) and Pangakis et al. (2023) provide case studies highlight-
ing the importance of effective prompting on model performance, their methods risk
overfitting on a subsample of the messages, which could not only fail to improve but
also potentially degrade classification performance on the rest of the data. Moreover,
their prompt enhancement procedures are not extensively documented. In Matter et al.
(2024), the final prompt must be examined closely to infer the prompting techniques
used, and the rationale behind the inclusion of additional descriptions or examples for
certain labels is not clearly explained. In Pangakis et al. (2023), the final prompts
and details of the refinement process are not reported. Consequently, the studies offer
limited guidance for researchers seeking replicable prompt engineering strategies.
Attempts to enhance model performance using either 0-shot-CoT or n-shot-CoT prompt-
ing methods are observed in social science applications, albeit in very few instances,
despite the accessibility of the 0-shot-CoT method and detailed guidelines on its use
(OpenAl, 2023b). Depending on the complexity of the task, CoT is observed to have a
varying improvement on the model’s performance. Zhong et al. (2023) document that
0-shot-CoT increases the performance by 15%, 1-shot-CoT increases performance by
8%, and 5-shot-CoT by 21%. Yet, they note that generating the reasoning examples
for n-shot-CoT prompts were challenging. They have first constructed a hand writ-
ten reasoning example for an input then instructed GPT to provide similar reasoning
demonstrations for other inputs which they used as the additional four reasoning exam-
ples in their 5-shot-CoT prompt. Conversely, in Savelka et al. (2023) where the task is
argued to be more complex, 0-shot-CoT is documented to worsen the performance of
the initial prompt by 13% and only to improve the performance of the improved prompt
by 4%. In addition to the established CoT prompting techniques, we identified various
studies where the model is prompted to provide reasoning after the classification. In
Table S1, studies employing this post-classification reasoning approach are indicated
in the “CoT” column with a tilde (~). Asking the model to reason after providing the
response is documented to either not improve or provide a minor improvement to the
model’s performance compared to a baseline of no CoT (Wei et al., 2022a). There-
fore, future studies should consider avoiding this methodological oversight to avoid
suboptimal model performance.

Few studies have explored n-shot prompting. Chae and Davidson (2023) experimented

with various examples for 1-shot and 2-shot prompting and documented that the choice
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of example significantly affects model performance, with F1 scores on average varying
between 42% and 73% across tasks. This variance corroborates concerns voiced in the
computer science literature about the high dependency of performance on the choice
of examples (Zhao et al., 2023). Rathje et al. (2023) implemented 1-shot prompting
across five tasks, with performance deteriorating in two tasks and slightly improving
in three, resulting in an average performance improvement of 3.5%. These outcomes
emphasise the majority label bias, where the model tends to favor labels that appear
more frequently in the demonstrations used in the prompt. Consequently, this bias is
particularly pronounced in 1-shot prompting, as the model often replicates the classi-
fication from the single example provided, leading to either reduced performance or
minimal gains (Zhao et al., 2023). Furthermore, Rytting et al. (2023) experimented
with up to 30 demonstrations in few-shot prompting and noted that although perfor-
mance improvements were observed, these gains plateaued after two or three demon-
strations. The diminishing marginal effect of additional demonstrations after at most
three examples suggests that the various tasks considered by Rytting et al. (2023) may
primarily be considered as recognition tasks (Pan et al., 2023).

Although only three studies have considered few-shot prompting, six other studies on
our list have engaged in batch classification, where multiple distinct texts are classi-
fied within a single request sent to the model (Zhang et al., 2022a; Amin et al., 2023;
Savelka et al., 2023; He et al., 2024; Matter et al., 2024; Heseltine and Clemm von
Hohenberg, 2024). Given the autoregressive nature of GPT, any classified example
in a batch classification process effectively acts as a demonstration for the subsequent
examples within that batch. For instance, a batch classification of 2n 4+ 1 messages
is, on average, equivalent to n-shot prompting, with the first message evaluated under
0-shot conditions and the last message under 2n-shot conditions. Considering that the
choice, order and number of examples used in n-shot prompting significantly affect
the model’s performance (Lu et al., 2021b; Kumar and Talukdar, 2021a; Zhao et al.,
2023), and given that in a batch classification each input is classified using a different
number, order, and choice of examples, the performance for each classification can
vary drastically when performing classification in batches. This method has been pro-
moted by all the stated studies for reducing costs and time for classification. Matter et
al. (2024) took batch classification a step further by experimenting with different batch
sizes to identify the optimal batch size that maximises the model’s performance. We
find it important to highlight this oversight in these studies’ prompting methodology
with the hope that it will be avoided in future research.

In the computer science literature, various papers that investigate prompting techniques
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consistently set the temperature hyperparameter of the model to 0 to maximise model
consistency (Brown et al., 2020; Kojima et al., 2022; Wei et al., 2022a). OpenAl’s
code examples also state that for classification tasks, they set the temperature value
to 0 (OpenAl, 2023a). Technically, the temperature hyperparameter, 7', adjusts the
softmax function commonly used in machine learning. As depicted in Equation 1,
the softmax function normalises the raw input scores from a neural network’s final
layer and transforms these scores into probability values. The outputted probability
values are proportional to the input values. A lower temperature value generates a
probability distribution of the input scores where the input score with the highest score
is given more weight. As the temperature value approaches to 0, the softmax function
effectively becomes the argmax function that maps the highest input value to 1 and
the other values to 0. As the temperature increases, the distribution generated by the
softmax function becomes more uniform, reducing the weight on the highest scored
tokens and increasing the weight on lower scored tokens. This results in the LLM
becoming more likely to pick lower-scored tokens, essentially adding randomness to

the token selection process.
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Pangakis et al. (2023) set the temperature value to 0.6 and repeated the annotation task

Softmax(z;) =

(1

at least three times, although the exact number of repetitions for each task was not
specified. They observed a positive correlation between the consistency of the classifi-
cation across repetitions and the accuracy of the classification for each message within
each task. More specifically, they found that a classification was 19.4% more likely to
be correct if the model classified it the same way three or more times. This suggests
that the model’s next token probability distribution is indicative of the difficulty of the
task classification for the model. This observation aligns with OpenAI’s recommenda-
tion to use the probability distribution of the next token predictions as a way to measure
the confidence level of the model on its next token prediction (OpenAl, 2023c).

Gilardi et al. (2023); Tornberg (2023); Li et al. (2024) and He et al. (2024) investigated
the impact of using two different temperature settings on classification performance,
as detailed in Table S1. They conducted multiple classification iterations for the same
message and reported the internal consistency of classifications at each temperature
setting to demonstrate the robustness of their results under temperature variations. Al-
though not explicitly argued in these studies, the high consistency of classification

results at higher temperature settings suggests that the tasks were not too challenging
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for the model, or in other words, the model had high confidence in its next token pre-
dictions, which was reflected in its next token probability distribution being close to
degenerate (given the high consistency of the classification results even at high temper-
ature values). Furthermore, the correlation between high confidence and high accuracy,
documented by Pangakis et al. (2023), is further supported in these studies by the high
accuracy of their results in conjunction with the high consistency of their results at high
temperatures. All these studies documented that the model’s performance was either
on par with or superior to that of either online or expert annotators. However, these
insights were lacking in these studies as the goal of Gilardi et al. (2023); Tornberg
(2023); Li et al. (2024); He et al. (2024) in comparing the consistency of two sets of
temperature values was only to argue that at lower temperatures, the model is more
consistent and recommended lower temperature to be considered in future studies.

A more cost-efficient way of investigating this is to utilise the “logprob” functionality
of GPT models that became available via the API right before Christmas 2023. By
ensuring that the model outputs a single token as a classification output, the “logprob”
functionality can be used to obtain the probability distribution for each classification
label (OpenAl, 2023c). This functionality not only provides probabilities associated
with each class prediction but also allows users to set their own confidence thresholds
for the classifications (OpenAl, 2023c). Although this functionality was not incorpo-
rated into our current study due to its irrelevance for our research questions, it is impor-
tant to note that it presents a viable alternative for running multiple classifications to
approximate the model’s classification distribution and to assess the confidence level
of the model’s classification for each message.

In Table S1, studies that used ChatGPT instead of directly interacting with the mod-
els via the OpenAl API are denoted under the “GPT” column with a tilde. There are
several issues associated with using ChatGPT for research purposes. First, the tem-
perature setting of the underlying model is not disclosed by OpenAl, and it cannot be
altered by users. The temperature of models used in ChatGPT is commonly assumed
to be 0.7; however, as previously stated, for task classification, the recommended tem-
perature value is O to achieve robust results. Second, ChatGPT employs a pre-defined
system prompt that precedes every conversation on the platform (see Section B.1 for
details), which can confound any prompts considered and, in turn, undermine the ro-
bustness and replicability of results . Third, there is a limit to the number of requests
to ChatGPT. Although this varies, the typical limit set by OpenAl allows only about

"The only way to get rid of the system prompt is to build a GPT agent where the platform allows the
users to defined their own system prompts. Yet, none of the studies in Table S1 considered this
option.
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40 requests every three hours which equates to a maximum of 320 classifications per
day. In contrast, when using the OpenAl API, our experience shows that depending
on how involved the task is, one can classify 100 messages in as little as 1.5 minutes
and up to 24 minutes. Moreover, just like the temperature hyperparameter, it is unclear
which specific GPT model is the underlying model used for ChatGPT or ChatGPTplus,
which in turn further undermines the robustness and replicability of results (Aiyappa
et al., 2023). Lastly, any classification task conducted in the platform has the risk of
data leakage, as a set of messages that are used for a classification via ChatGPT has
the possibility of becoming part of the training data for the next iteration of the model
used for the platform (Aiyappa et al., 2023). In sum, we strongly recommend the re-
searchers to not use ChatGPT due to the closed nature of its underlying GPT models
and due to the risk of data leakage.®

Reiss (2023), unlike other studies in our list, solely focuses on the consistency of GPT-
3.5. It is frequently cited in social science literature for its recommendation against
using GPT for text classification, highlighting the model’s unreliability due to doc-
umented output inconsistencies. The author claims that the model’s classification is
inconsistent, and therefore, the model is unreliable in two dimensions. First, the au-
thor compares the classification results for temperature values of 0.25 and 1 and shows
that the classification results are not consistent between these temperature values, as
for a single repetition of each message, the Krippendorf’s alpha is below 0.8 (0.71).
Yet when he repeats the classification three and ten times, the classifications results
becomes consistent with a Krippendor’s alpha above 0.8, reaching 0.91 for ten rep-
etitions. The author’s fundamental misunderstanding lies in his assumption that the
output distribution of tokens varies with changes in temperature. However, in reality,
the model’s generated token distribution is independent of the temperature hyperpa-
rameter (hence the prefix “hyper”). In other words, the model produces a similar token
distribution across classifications of the same instance, regardless of the temperature
value used. When the temperature is high, the model tends to select less likely tokens
more frequently, which in turn results in variation in the outputted token (which cor-
responds to the classification provided by the model). Therefore, what is perceived as
inconsistency is merely a characteristic of the model’s functionality, which can be mit-
igated by setting the temperature to 0, as recommended by OpenAl (OpenAl, 2023a).
Second, the author compares the classification results for 10 different prompt vari-

8 Additionally, researchers should be cautious not to use “ChatGPT” to refer generically to any GPT
model they use in their research, as this is analogous to calling an Intel processor a Dell computer
simply because it is used within a Dell product. The classification tasks are performed by the under-
lying GPT model leveraged by the ChatGPT platform.
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ations where he describes the differences in instructions between these prompts as
“minor”. Firstly, it is unclear whether the author pools the classification results from
both temperature settings for this analysis. Assuming that the results are not pooled
by temperature and that only the lower temperature value of 0.25 is considered, he
still misleads the reader with his characterisation of the variations in the 10 prompts
he compares as “minor”. A closer examination of the 10 prompts under considera-
tion reveals that the first prompt is the original human instruction prompt, which is
significantly longer than the others and is written mostly in German with some parts
in English. This original prompt provides considerably more information about the
labels “news” and “not news”. Previous studies have documented that prompting in a
language other than English significantly affects the performance of the model (Kuz-
man et al., 2023). Moreover, providing additional definitions in the prompt is expected
to effect the classification results of the model (Chae and Davidson, 2023; Peskine et
al., 2023). Therefore, given that his subsequent prompts are in English and do not
provide additional descriptions of the categories, it is not surprising that the results
from this first prompt differ form the classification results of the other prompts. His
second and third prompts are “Basic” prompts that indeed involve only minor changes.
His fourth and fifth prompts also exhibit minor alterations; they maintain the original
semantics of the prompt while adding additional emphasis on how to label categories.
On the other hand, prompts 6 and 7 employ the prompt engineering technique of in-
voking a persona on the model. In prompt 6, the model is instructed to “take a human
perspective”, and in prompt 7, it is instructed to act as “a research assistant in a sci-
entific project”. It has been documented that invoking a persona on the model signif-
icantly changes the model’s performance and, consequently, the classification results
Kong et al. (2023); Salewski et al. (2024). Therefore, the fact that these prompts gen-
erate classifications that differ from the other prompts should be expected. In prompt
8, the model is instructed to base its decision on the article “What is News? News
values revisited (again)” by Tony Harcup and Deirdre O’Neill. This represents a sig-
nificant deviation from the other prompts. Moreover, it is unclear how the model is
influenced by being instructed to use information from an article, as this approach has
not traditionally been recognised as a prompting technique. However, it is expected to
significantly affect how the text is classified, and therefore, it should not be surprising
that the classification results differ.

Lastly, in prompts 9 and 10, a weaker definition for the categories is used. For instance,
instead of the direct instruction “if the text is news classify it as 17, the prompts state

“1 means all or most in the text is news”. Such a variation in the prompt can potentially
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alter the classification outcomes even for human annotators. Therefore, the fact that
the model provides a different set of classifications when the classification category is
presented in a weaker form suggests that the model can discern semantic nuances in
the instructions and closely follows them; and this capability should not be considered
as evidence of inconsistency in the model’s performance.

In brief, what the author describes as “minor” variations in the prompts are in fact sig-
nificant changes, which naturally lead to different classification results. Therefore, his
arguments concerning variations in temperature and prompt design do not substantiate
the claim that GPT is unreliable, and his recommendation against using GPT for text
classification is unwarranted. More importantly, it is imperative that researchers take
the time to thoroughly investigate the claims of a study by examining the prompts used
to ensure the validity of its claims.

A similar mistake is made by Savelka et al. (2023). They compare the classification
results of a prompt with 0-shot-CoT and without 0-shot-CoT, in both single and batch
classifications. Given that batch classification is effectively akin to n-shot prompt-
ing, the authors inappropriately compare results from established prompting methods
like 0-shot-CoT and n-shot prompting to a prompt without these techniques, to ar-
gue that GPT classification is not robust to “minor” prompt changes. However, the
modifications to the prompt are substantial enough to expect changes in the model’s
classification outcomes, and thus should not be cited as evidence of the model’s prompt
“brittleness” (Kaddour et al., 2023).

Lastly, we would like to address a major issue we observed with the prompts consid-
ered in Ziems et al. (2024). While their study offers valuable guidelines for effectively
conducting 0-shot prompting, a closer examination of their various prompts’ reveals
several inconsistencies and issues. Despite their claims of using 0-shot prompts, we
identified that two of their prompts inadvertently provide examples for each label, ef-
fectively making them 1-shot. Additionally, while some of their prompts are “Basic”,
others include additional descriptions for each label. We also discovered that three
prompts employed the technique of invoking a persona. Moreover, although they arbi-
trarily used additional explanations in some prompts and additional demonstrations in
others, in one prompt, they instructed the model to categorise labels “based on formal
workplace social norms”. “Social norm” is a term that is too broad and varies signifi-
cantly across cultures. Consecutively, the models’ performance would have benefited

significantly from a more detailed description of what these social norms entailed,

°It was a challenge to access their prompts. They did not provide a supplementary online appendix
where they clearly displayed the various prompts they have used. We took the effort to search
through their code to find the prompts that they have used.
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yet they arbitrarily decided not to provide any. These inconsistencies across tasks are
noteworthy because they compare the model’s performance across tasks without con-
trolling for the prompt techniques used. Furthermore, while some prompts include
descriptions, others lack any explanatory detail, and no efforts are made to standardise
or improve these descriptions across different tasks. Yet, they boldly claim that based
on their results, LL.Ms should not be used for annotation tasks. We believe that to make
such bold claims, one must first ensure that their prompts are optimised to maximize
the LLMs’ performance to the fullest extent possible. Without such rigorous optimi-
sation, their recommendation against using LLMs for text classification seems rather

unwarranted.

A.3. Text analysis in Economics

In economics, the applications of text analysis include the evaluation of policy plat-
forms, understanding news impact on stock prices, central bank communication influ-
ence on financial markets, media slant and more (Gentzkow et al., 2019). In Table S2,
we provide a representative list of the papers that used GPT, which are so far confined
to the areas of central bank communication, financial markets (sentiment analysis of
firm specific news) and corporate finance (analysis of conference call transcripts of
firms).

Multiple studies (Hansen and Kazinnik, 2023; Alonso-Robisco and Carbd, 2023; Lopez-
Lira and Tang, 2023; Jha et al., 2024) in Table S2 have documented that GPT models
outperform existing text classification techniques such as BERT!? (or its variants) or
dictionary-based methods (Penczynski, 2019; Hiining et al., 2022a). On the other hand,
in classifying Central Bank communication transcripts, GPT models are shown to per-
form poorly compared to expert annotators in classifying Central Bank communica-
tion transcripts in all (Hansen and Kazinnik, 2023; Smales, 2023; Alonso-Robisco and
Carbd, 2023; Peskoft et al., 2023) but one study (Fanta and Horvath, 2024).

0BERT (Bidirectional Encoder Representations from Transformers) and its derivative models, such as
finBERT, sBERT, roBERTa, are transfomer-based language models that are relatively “small” (De-
vlin et al., 2018; Liu et al., 2019; Huang et al., 2023) with a parameter size of 110 million for the base
model and 355 million parameters for its variants (see Section A.1 for comparison to GPT models).
Unlike GPT models, or any other unidirectional LLMs such as Gemini or Claude, BERT cannot
simply be inputted with instructions that are potentially accompanied with detailed descriptions of
categories and annotation demonstrations, and be expected to either recognise or learn from these,
nor can it provide reasoning in a similar fashion to GPT-3.5 and GPT-4. Furthermore, BERT and
its variants have a relatively small token limit of 512 (Devlin et al., 2018; Liu et al., 2019; Huang et
al., 2023), compared to token limits of 4096 for GPT-3.5-turbo, 8192 for GPT-4-turbo, and 32768
for GPT-4-32k. On the other hand, because BERT is a significantly smaller language model, it is
feasible to run BERT in a local system or to fine-tune it using a training dataset at a comparatively
lower cost.
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Table S2: Papers in Economics.

Paper Field GPT Temp. Prompt Shot CoT
Alonso-Robisco  and Macroecon. 3.5 ~ 0.7 Basic 0 ~
Carb6 (2023)
Smales (2023) Macroecon. 5.\5/*, 4* ~ 0.7 Basic 0
Hansen and Kazinnik Macroecon. 3,4 ? Basic 0
(2023)
Basic, &
Peskoff et al. (2023) Macroecon. 4 ? 0,10
Structured
Fanta and Horvath Macroecon. 3.\5/*, 4* ~ 0.7 Basic 0,1
(2024)
Glasserman and Lin Finance 3.5 0 Basic 0
(2023)
Kim et al. (2023) Finance 3.5% 0 Basic, 0
Lopez-Lira and Tang Finance 3.5%4 0 Basic 0
(2023)
Jha et al. (2024) Finance 3.5% ~ (0.7 Basic 0 ~
Obaid and Pukthuan- Finance 4 ? Original 0
thong (2024)
Basic,,
Our Paper Exp. Econ. 3.5%,4* 0 Original & 0—-19 Vv
Structured*

Notes: The “Field” column represents the subfield of economics under which the annotation tasks can be categorized. In the
“Model” column, the asterisk indicates that the turbo version of the model is used, and the tilde indicates that the model is
not leveraged via the API but through the ChatGPT platform. In the “Prompt” column, “Basic” indicates a basic instructions
to classify a text, “Basic” indicates a basic instruction accompanied by a short definition of for each category, “ Original”
indicates that the original human instructions are used verbatim as the prompt, and “Structured’ indicates that a prompt template
is used to structure the prompt into distinct components such as instructions, context, definitions, examples and so on. Moreover,
in the “Prompt” column, asterisk superscript indicates that the study investigated either to improve the model’s performance
via restructuring or augmenting the prompt through rephrasing, incorporating additional context or definitions, making the
instructions more precise, etc. or to investigate the effect of a specific variation on the prompt such as considering the prompt
in an other language, instructing the model to output a non-binary classification, etc. The “Shot” column indicates the number
of demonstrations used in the prompt (n-shot prompting). The “Temp.” column indicates the temperature parameter(s) used
for the respective model(s), question mark indicates that this value is not provided in the respective paper. Moreover, the exact
temperature value for ChatGPT is not known and 0.7 the unconfirmed yet commonly assumed value for it. The “CoT” column
not only indicates whether the study used some form of chain-of-thought prompting technique (v") but also points out studies
that considered asking for an explanation after the classification is done (~) either as an attempt to improve the performance or
to further investigate the outputs provided.

In finance, the effectiveness of these models is typically assessed based on their abil-
ity to predict investment returns or the value of companies over a set period, rather
than by comparing the classification results to a ground truth established by human
annotators. For instance, Lopez-Lira and Tang (2023) and Glasserman and Lin (2023)
implemented basic investment strategies, where stocks are bought or sold based on
the news sentiment classified by the model the day before the transaction. This ap-

proach resulted in cumulative returns of 550% (Lopez-Lira and Tang, 2023) and 350%
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(Glasserman and Lin, 2023) over a two-month period.

Almost all studies in Table S2, used either a “Basic” or “Basic,” prompt. Majority
of the studies related to finance have additionally leveraged invoking a persona of a
“Financial Expert” (Jha et al., 2024; Lopez-Lira and Tang, 2023; Glasserman and Lin,
2023). Differently from any other studies we have reviewed, Obaid and Pukthuanthong
(2024) used as a prompt a set of 14 survey type questions, each requiring a likert-
scale response that is traditionally used for human subjects. Hence, although their
prompt is not borrowed from an existing human instruction, we classified their prompts
as “Original”. Differently from our model and previous studies discussed in Section
A.2, Peskoff et al. (2023) imposed a format structure upon their prompt through XML
tags. Moreover, only two studies consider few-shot prompting technique and Fanta
and Horvath (2024) document that 1-shot prompting technique did not provide any
improvement on the model’s performance which is most likely due to their attempt
to do classifications in batches. Lastly, just as with almost all the studies reviewed in
Section A.2, none of the studies in Table S2 considered either 0-shot or n-shot CoT
prompting technique. Yet, few considered to leverage models’ reasoning capabilities
for non-performance related inquiries (such as getting a more detailed understanding of
the classification made by the model) by instructing the model to provide a reasoning
after it provided its classification.

Similar issues with prompting methodologies, albeit minor, are also observed within
these studies. Few studies have failed to disclose the temperature hyperparameter they
have used for their models. One study have only provided a brief description of their
prompt but did not disclose it (Kim et al., 2023). And few others have used Chat-
GPT platform for their classification rather than directly accessing the GPT models
through the OpenAl API. In addition, one puzzling prompting technique we observed
with two studies (Lopez-Lira and Tang, 2023; Glasserman and Lin, 2023) is to begin
their prompts with the statement: “Forget all your previous instructions”. This is the
most basic prompt injecting method to “jailbreak” a model from its pre-defined system
prompt which serves to prevent the user from leveraging the model to generate harmful
content (Shen et al., 2023). However, neither of the studies that used this statement did
their classification via the ChatGPT platform, hence there was no need to attempt to
overwrite a system prompt. Moreover, this specific prompt injection phrase is com-
monly known and most likely already accounted for by the companies that provide the
LLM services (Anthropic, 2023). Therefore, even if it was used as intended, it would
not have worked, and would have potentially resulted in their accounts to be flagged.

In experimental economics, the analysis of text has increased with the augmentation
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of experimental action data with choice-process data (Cooper et al., 2019). Starting
with a prominent exploration of strategicness in games by means of team chat (Cooper
and Kagel 2005), further investigations have used intra-team communication (Bur-
chardi and Penczynski, 2014), talk-aloud protocols (Capra, 2019) and written advice
(Schotter, 2003). Naturally-occurring language has also been analysed to understand,
for example, cooperative behaviour in large stake game shows (Van den Assem et al.,
2012).

In an earlier attempt to computerise text classifications, Penczynski (2019) describes
the effectiveness of supervised machine learning techniques in classifying intra-team
communication in various games according to the level of strategic sophistication.
More recently, Hiining et al. (2022a) and Hiining et al. (2022b) consider both “tra-
ditional” dictionary-based methods and BERT for classification of “premises”, and
documented that BERT performs as good as dictionary-based methods. Howevever,
while their automated classification results show very good performance (87% match
with human classification), the model’s performance heavily relies on the size of the
training data, and deteriorates as the size of the training data decreases, or as the con-
cepts to classified become more nuanced!! (Hiining et al., 2022a). Notably, Hiining et
al. (2022a) state that effective performance with automated classification using BERT
or dictionary-based methods requires “a few hundred training data per classification
category”. Unlike these methods, the use of GPT in this study obviates the need for

“supervision”—the training of a model with substantial appropriate data.

B. Classification Methodology

B.1. General Prompt Structure

In order to investigate whether GPT can be considered as a viable alternative to human
annotators, it is essential to ensure the observed performance is not compromised by
suboptimal prompt design choices. Research has shown that using instructions tailored

for human annotators directly as prompts leads to significantly poor GPT performance

""Hiining et al. (2022a) demonstrate the difficulty of classifying nuanced text with the following pair of
messages: “Rent control will lead to fixed and projectable prices for renters.” and “Rent control will
lead to fixed prices that cannot fluctuate anymore.”. GPT-4-turbo successfully identifies the nuance
between these two messages, and classifies them correctly using the following “Basic” prompt:

- Classify whether the following message is against or for rent control.
- Provide a step-by-step reasoning before providing your classification.
- Code ’'for’ as 1 and ’"against’ as 0.

4

- Refrain from providing any classification other than ‘for’ or ‘against’.

- Follow the format: \n Reasoning: \n ... \n Classification: 0/1.
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(Efrat and Levy, 2020). On the other hand, reframing these human-tailored instruc-
tions into cross-task generalizable prompt templates has been shown to substantially
improve GPT’s performance across a variety of tasks (Mishra et al., 2021b). While our
objective is not to identify the ultimate prompt design, we are nevertheless dedicated
to optimising our prompts. By doing so, we aim to ensure that if GPT’s performance
falls short, it is more likely a reflection of its own limitations rather than the result of
our potentially suboptimal prompt design.

Recall that the tasks we examine are grouped into two distinct classification concepts:
“promise” and “‘strategic thinking”. Within each of these groups, the tasks exhibit dif-
ferences in complexity and context, leading to natural variations in their instruction
design and structure. Our interest lies in examining how the model’s performance
adjusts as the complexity within each task varies. However, since our prompts incor-
porate certain crucial parts of the human instructions verbatim, there is a significant
variation in wording and, as a result, in the style of the prompts, especially noticeable
between the two “strategic thinking” classification instructions and, to a much lesser
extent, between the two “promise” classification instructions. Given the documented
impact of word choice on the model’s performance (Yuan et al., 2021; Haviv et al.,
2021; Jiang et al., 2020), the inherent potential for variability in the effectiveness of
our instructions that a prompt template cannot fully address remains. Nevertheless,
it has also been established that even minor variations in a prompt, such as spacing
between statements or the choice of separators among arguments, can affect an LLM’s
performance (Sclar et al., 2023). Therefore, employing a general prompt template
allowed us to at least mitigate variations stemming from structural and formatting dif-
ferences within the prompts of the two classification tasks. In brief, our choice to use
a general prompt template was also driven by the goal of imposing a degree of con-
trol and consistency in the structure and format to the classification instructions. This
choice, in turn, enabled a more robust investigation and comparison of the model’s
performance across tasks that vary in complexity and context.

In brief, to understand how task-specific context and complexity influence GPT’s per-
formance and to assess its potential as an alternative for human annotators, adopting
a general prompt template was deemed essential. This strategy reduced the variability
caused by differing instructions and enhanced our ability to isolate and evaluate GPT’s
true performance consistently across tasks. Hence, following the guidelines (Zhao et
al., 2023; Ziems et al., 2024), recommendations (White et al., 2023), and investigations
(Mishra et al., 2021b; Clavié et al., 2023; Yuan et al., 2023; Chae and Davidson, 2023;
Savelka et al., 2023) for effective prompt design, we developed and utilised the prompt
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template depicted in Figure 1.

All four human-tailored instructions that we used as a basis to construct our prompts
consisted of two consecutive parts: a first part providing the background information
on the experiment, followed by a second part detailing how the human annotator should
classify each message. The background information consisted of, to a varying degree,
a detailed explanation of various components of the experiment: the decision process
of the subjects, the payoff structure of the game, the communication protocol, and a
theoretical background for the game played. The “Context” section of our prompt tem-
plate served to provide all these background information, in line with previous studies
that have shown incorporating additional background details into prompts positively
impacts GPT’s performance (Chae and Davidson, 2023; Savelka et al., 2023; Yuan et
al., 2023; Clavié et al., 2023). However, rather than incorporating these information
into the “Context” section verbatim, we opted to include only the most crucial infor-
mation deemed necessary for GPT to properly infer the context of the message to be
classified (expert summaries). Given that background information primarily serves to
provide domain specific linguistic patterns to facilitate the model to better interpret the
context of the message (White et al., 2023), we conjectured that an effective summary
of the background information is sufficient enough as long as this summary manages
to maintain and present the key words and phrases that encompasses these patterns.
Although the literature presents mixed outcomes regarding the effectiveness of pre-
senting information in a more succinct manner—as it has been documented to either
improve a prompt’s performance (Beltagy et al., 2020; Kuznia et al., 2022) or have no
significant effect (Mishra et al., 2021b; Li and Qiu, 2023b) depending on the model
deployed—it, at the very least, served to significantly reduce the cost of our classifica-
tions by minimising the number of inputted tokens.

In line with our objective to reduce the effort needed to utilise GPT for classifica-
tion tasks, we opted to incorporate the second part of the human-tailored instructions,
which specifically detail the classification task, verbatim into the “Classification Task”
section of our prompt template. This approach not only allowed us to investigate the
possibility of using GPT for classification tasks with minimal effort but also provided
us with the opportunity to assess if instructions designed for human annotators are
effective enough to elicit high-level performance from GPT. Peskine et al. (2023)
compared the effectiveness of label descriptions to having no descriptions and also
evaluated the performance impact of descriptions provided by experts versus those
generated by GPT. They documented that both types of label descriptions significantly
enhanced the model’s performance, with descriptions from experts leading to even
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greater improvements. Moreover, research by Mishra et al. (2021a) indicates that task
descriptions crafted by experts generally surpass the effectiveness of basic instructions
commonly found in NLP literature, such as those presented by Bach et al. (2022) in
PromptSource, e.g., “Classify whether the following message constitutes a promise
or not.” Additionally, Logan IV et al. (2021) have shown that expert-crafted prompts
from Schick and Schiitze (2020) typically outperform automatically generated (soft)
prompts.'?> Hence, based on these findings, we argue that it is ideal to use existing
classification instructions prepared by experts and to restructure them in a manner that
is more easily processed by the model, following the guidelines established by Mishra
et al. (2021b).

The “Example” section was designated to separately provide examples provided in
the original instructions. However, in instances where the original instructions lacked
examples, this section was omitted from the prompt. Additionally, there were scenar-
ios where instructions on how to classify messages were interwoven with examples—
forming a pattern of instructions followed by supporting examples, then more instruc-
tions, and so forth. In these situations, due to our commitment to use the classification
instructions from the original instructions verbatim, and considering that extracting ex-
amples from their instructional context could compromise the coherence of the instruc-
tions, we chose not to isolate these examples into a distinct “Example” section. Conse-
quently, in such cases, an independent “Example” section was also omitted. Moreover,
there were instances in the original codebook where examples were provided sepa-
rately from the classification instructions, yet each example or set of examples was
accompanied by additional remarks. In these cases, we opted to create a separate “Ex-
ample” section while preserving the structure of each example followed by its remark.
This approach was taken with the aim of staying as close as possible to the original
instructions to minimise the effort needed to restructure and reframe the codebooks
into prompts.

Apart from the “Context”, “Classification Task”, and “Examples” sections, the other
sections in our prompt template were not directly derived from the original instruction
text. These additional sections were included based on recommendations found in the

literature regarding optimal prompt design (Reynolds and McDonell, 2021; Mishra et

12Soft prompts, in contrast to discrete, human-readable prompts, are vector-like, non-textual parameters
fine-tuned to steer the outputs of language models. They constitute an optimised set of tokens
(words or subwords) designed to influence a pre-trained language model’s output for specific tasks,
facilitating task-specific adjustments without modifying the core model (Refer to Li and Liang,
2021; Lester et al., 2021, for additional information). Though this comparison primarily involves
very basic single-sentence prompts and soft prompts, it underscores the efficacy of expert-crafted
prompts.
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al., 2021b; White et al., 2023).

The first section, “General Task™, serves as a direct task specification (Reynolds and
McDonell, 2021), that serves to summarise the task broadly by incorporating key terms
like “classify”, “message”, “promise”, or “strategic thinking”, without specifying how
to accomplish the task. The efficacy of this section in enhancing GPT’s performance
is predicated on the assumption that the model has already acquired an understanding
of these fundamental concepts during its pre-training phase. Therefore, by offering a
high-level task description that includes these keywords, it is posited that GPT is more
aptly primed to produce the intended output (Mishra et al., 2021a; White et al., 2023).
The “Role Persona” section acts as an augmented task specification that employs
memetic proxy concepts to deepen the task description (Reynolds and McDonell,
2021). This section seeks to subtly expand upon key task concepts like “classify”,
“message”, “promise”, and “strategic thinking” by placing them within the context of
“a behavioural economist”. This method enhances the model’s contextual understand-
ing of the task and aligns its operation with the persona’s style of reasoning. Notably,
research has shown that directing the model to emulate a specific persona can elevate
its performance similarly to the impact observed with CoT prompting (Kong et al.,
2023). Hence, differently from the “General Task™ section, this section implicitly in-
structs the model on how to perform the task, by drawing on the model’s pre-existing
knowledge of such roles. However, it’s worth noting that the specific traits of the per-
sona adopted by the model are unclear. This is primarily because there is no detailed
knowledge about the specific data on which GPT has been trained on. Hence, while the
role persona technique has been effective in elevating GPT’s performance (Kong et al.,
2023), there’s a risk it may highlight biases from its training dataset (Salewski et al.,
2024).'3 However, in our context, we do not foresee any biases associated with assum-
ing a behavioural economist persona negatively impacting GPT’s task performance.
The “Constraint”, “Output Format”, and “Classification Coding” sections collectively
shape GPT’s output generation, each serving a complementary role in guiding the
model towards producing outputs in a specified format. The “Constraint” section en-
sures GPT adheres to the particular format outlined in the “Output Format” section,
which specifies the exact formatting requirements for the model’s outputs. Together,
these sections are pivotal in achieving consistently formatted outputs and facilitate the
extraction of classification outcomes using basic string pattern matching algorithms.

Moreover, when specific output criteria are necessary beyond the conventional for-

3For example, Salewski et al. (2024) observed that GPT-3.5’s ability to classify car models improves
when prompted to assume a male persona over a female one.
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mat, the “Constraint” section introduces additional directives to meet these tailored re-
quirements to guarantee that outputs precisely match the classification task’s needs.'*
Similarly, the “Classification Coding” section, akin to both “Constraint” and “Output
Format”, furthers this objective by instructing the model on how to encode various
label categories in its output.'

The “Classification Process” section was devised strictly to employ the 0-shot-CoT
prompting method, and was incorporated into our prompts only when we explored
this prompting technique’s effect on the classification performance of GPT. Our use of
the 0-shot-CoT process diverges from the methodology presented in the foundational
paper by Kojima et al. (2022). In Kojima et al. (2022), the technique involves append-
ing “Let’s first think step-by-step” to the classification prompt, explicitly guiding the
model to begin with reasoning before tackling the assigned task. We’ve chosen an al-
ternative strategy that better fits our existing prompt template by instructing the model
to “provide a step-by-step reasoning before providing a classification” under the “Clas-
sification Process” section. Furthermore, in order to ensure that this order is strictly
followed by the model, when CoT is considered in the prompt, the “Output Format”
explicitly outlines that GPT should structure its response by initially presenting a rea-
soning section, subsequently followed by the classification in a dedicated section as

depicted in Figure S1.

Figure S1: Output Format Section for CoT

# Output Format
## Reasoning

## Classification
<Desired output format>

Segmenting a lengthy set of instructions into a list format is argued to enhance the
model’s comprehension and response accuracy, and is documented to improve GPT’s
performance (Mishra et al., 2021b). Hence in order to optimise GPT’s classification
performance, we adopted this reframing technique by converting the original instruc-
tions into sequences of semantically coherent statements. Each itemised statement was
no longer than two sentences long, preserved the original statements word for word,
and ordered in a way that stayed faithful to the original order of the instructions. The

list format was also applied to all newly created statements or instructions.

14 An example includes addressing instances where GPT might provide explanations for its classifica-
tions, not requested in the prompt. Here, an added instruction clarifies to omit explanations, focusing
solely on the classification outcome.

5For instance, if GPT identifies promise, it is directed to simply use “1” in its classification output.
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We opted to use Markdown for our prompt template due to its compatibility with our
methodological approach and structural needs. This format adeptly accommodates the
itemisation reframing technique by facilitating list presentations which is a fundamen-
tal format feature of our template. Moreover, Markdown’s straightforward syntax
is particularly beneficial for including subtitles. Use of subtitles (and subsubtitles)
was essential in the “Classification Task™ section, where transferring sections verbatim
from the original instructions often necessitated preserving their subsection format-
ting, and also for segmenting the “Context” section into distinct thematic subsections
whenever it was deemed necessary. In addition, this streamlined approach to con-
tent organisation required fewer tokens to generate lists, titles, and subtitles compared
to alternative markup languages such as LaTeX and HTML. Moreover, the fact that
ChatGPT, the application format of GPT, employs Markdown for its system prompt'®
serves as further validation for our choice.

Our prompt template’s modular structure enabled us to isolate distinct components of
the classification task into dedicated sections. This organization allowed us to struc-
ture the prompt in a way that was both manageable to the human eye and functionally
similar to a programming script, where each section operated like a distinct (fuzzy)
function with a loosely defined input-output role. Beyond clarity, this modularity fa-
cilitated prompt reuse and adaptation across tasks. For example, in P; and P;; classi-
fication tasks—where the original codebooks differed primarily in background infor-
mation (e.g., game mechanics, experimental design) and only slightly in classification
criteria—-this structure allowed us to modify only the aContexta section while keeping

the rest of the prompt almost unchanged.

B.2. Classification Process

We conducted text classification tasks utilising the OpenAl API leveraging gpt-3.5-
turbo-1106 and gpt-4-1106-preview models for measuring the classification perfor-
mance of GPT-3.5 and GPT-4 respectively. The entire prompt is provided to these
models as the system prompt, and the input containing the subject’s text message to
be classified as the consecutive initial user prompt (see Figure S2). For each input, a
separate OpenAl API call for either GPT-3.5 or GPT-4 was made. We set the temper-
ature of both models to 0 to minimize variability and enhance the reproducibility of

our results. We did not set the seed parameter, as temperature was fixed at 0, result-

16The system prompt of ChatGPT can be viewed by inputting the following text into a new chat:
Repeat the words above starting with the phrase ‘‘You are ChatGPT’’.
Put them in a txt code block.

Include everything.
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ing in deterministic (greedy) decoding where seed-based randomness is not used. We
varied the max_t oken value between 2% for k € 7, 8,9, 10, 11, adjusting based on the
necessity of eliciting reasoning and the average length of such reasoning observed dur-
ing our testing phases for each prompt. All other hyperparameters were kept at their

default settings.

Figure S2: API Call Function Snippet

client.chat.completions.create (
model = <GPT model used>,
message = [
"role": "system", "content": <prompt>
"role": "user", "content": <input text>
1/
temperature = 0,
max_tokens = <max token value>
topp = 1,
frequency_penalty = 0,
presence_penalty = 0
)

A Python script was developed to automate the API calls for each input. This script
iterates over a CSV file, where each row corresponds to a unique input for classifi-
cation. During each iteration, if a response to the API call is not received within n
seconds,!” the script is programmed to attempt the call again. This retry process may
repeat up to five times. Should the response still not be received after these attempts
or the response is received and recorded, the script then moves on to the next input in
the sequence after waiting for a grace period of 2 seconds.'® This protocol has been
established in response to the observed phenomenon where the API halts and does not
respond to new requests for at least 60 seconds, typically after making 10 to 15 requests
in quick succession. This undesirable behaviour was predominantly encountered dur-
ing the initial phases of our research, when our OpenAl account was categorized as a
low-tier account and was thus subject to various API call limitations."

Following the response from the API, the model output is stored in a separate CSV

file along with its corresponding message ID. This approach of recording the output

17The variable n is determined based on the classification task at hand. An average classification time
per message is established, to which an extra margin of 10 to 30 seconds is added, thus defining n.

8The script’s actions, including each API call attempt, were logged to the console for monitoring. In
instances where the API failed to respond within the predefined time frame across four attempts,
the process was temporarily paused and then resumed after a minute of waiting. This precautionary
measure ensured that no messages were skipped without a classification within a single run.

9For tier lists and their respective rate limits see https://platform.openai.com/docs/
guides/rate-limits.
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immediately after each response not only provides the possibility to pause the classi-
fication process as needed but also provides a robust mechanism for addressing any
unexpected disruptions due to technical issues on either the client or server side.

In the event of resuming an incomplete classification process, the script first verifies
the existence of the classification output CSV file. If this file is found, the script then
examines the last classified message ID recorded in the file. Utilising this information,
it identifies the next message to be classified from the input CSV, aligning with the se-
quence of messages. Following this verification, the script continues with the iterative
process as previously described, ensuring a seamless continuation from the point of in-
terruption. This procedure guarantees an efficient resumption of the classification task,
eliminating the duplication of efforts on messages that have already been classified.
Additionally, this eliminates the necessity for manually identifying the next message
to be classified when resuming an interrupted classification, a process that is prone to
human error.

The status of the OpenAl service is monitored both prior to and during the classifica-
tion process. Should there be any reported incidents affecting the service, the classifi-
cation task is either not initiated or immediately halted. Furthermore, if an incident is
reported during the classification process, or within the subsequent 12 hours involving
the specific model used, any classifications conducted in that time-frame are invali-
dated. A fresh series of classifications for the same dataset using the same model is
scheduled to commence 24 hours after the incident has been reported as resolved. This
protocol ensures the integrity and reliability of the classification results by accounting

for potential disruptions and bugs that might affect the performance of the model.

C. Datasets

C.1. Promise I: Principal-Agent Game
C.1.1. Game and Data

(Charness and Dufwenberg, 2006, henceforth CD) test experimentally the impact of
communication in a principal-agent game. They find that messages sent by principals
to agents, particularly those containing promises, affect agents’ beliefs and thus their
actions.

CD study a sequential two-player game using the strategy method. Player A chooses
In or Out, and player B chooses to either Roll or Don’t Roll a six-sided die. Player
B’s choice affects payoffs only if A chooses In. Player B makes her decision without

knowing player A’s actual choice, but under the hypothetical condition that A chose In.
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Figure S3 illustrates structure and payoffs of CD’s ['; game. CD investigate behaviour

in treatments where player B can send cheap-talk pre-play messages to player A.

A

Success
[p=5/6]

Failure
[=1/6]

0 12
10 10

Figure S3: CD’s (5,5) game.

We have five benchmark classifications for this dataset. CD classified the messages
themselves (C'D). Further, (Houser and Xiao, 2011, henceforth HX) provide a classi-
fication of strong and weak promises from both a traditional content analysis (Cy and
('s) and the classification game they introduce (G and Gg).

HX conducted a series of experiments to build their classification datasets. All anno-
tators were students from George Mason University who participated in one of their
“classification experiment” treatments. For the traditional content analysis, subjects
received detailed written instructions that provided two distinct criteria to determine
whether a message is “promise” or “empty talk” (see Section C.1.2 for further details
on the instructions). In their weak content treatment, C'y, the section of the instruc-
tions subject to treatment variations stated: “Classify a message as ‘Promise or intent’
if at least one of the following conditions is probably satisfied”. In their strong con-
tent treatment, C'g, the instruction was identical except that the word “probably” was
replaced with “certainly”. Twenty-five subjects participated in the Cyy treatment, and
twenty-four subjects in the C's treatment. All participants received a show-up fee of
$7 and were paid an hourly rate of $12. On average, each participant was paid $19.
In total, the classification tasks cost $475 for the Cyy treatment and $456 for the Cg
treatment.

In their classification game treatments, subjects were not given detailed instructions
outlining the criteria for the classification categories. Instead, they received a generic

instruction to classify each message as either “promise” or “empty talk”. For the weak
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treatment, Gy, subjects were verbally instructed to “Classify a message as ‘Promise or
intent’ if, in your opinion, it includes any statement of intent”. For the strong treatment,
(s, the verbal instructions were almost identical, with a key difference in the final
phrase where “it includes any statement of intent” was replaced with “it is certainly
a promise”. Twenty-five subjects participated in each treatment. Subjects were paid
a show-up fee of $7, and were additionally informed that three of their classifications
would be randomly selected. If these matched the majority classification, they would
receive an additional $5. The classification procedure lasted approximately one hour,
and the median payment per subject was $22. In total, the cost of the classification task

for each treatment was approximately $550.

CD Cs Cw Gs Gw

24 26 27 24 31
4 12 11 14 7

fp 63 .68 71 .63 .82

P
E

Table S3: Aggregate results of the different human classification methods

Out of the 38 messages to be classified, all classification methods yielded the same
result for 29 messages. The number of messages classified as “promise” (P) or “empty
talk” (£) for each method is displayed in Table S3. HX argued that the coordination
aspect of the game classification method allowed subjects to be more sensitive to subtle
variations in the instructions that either weakened or strengthened the definition of
what constitutes a promise. This sensitivity was evidenced by the notable difference
in the number of messages classified as “promise” between the G's and Gy treatments

compared to the difference between the C's and C'yy treatments.

CD Cs Cw Gs Gw

cD 1

Cs 77 1

Cw 71 94 1

Gs 78 89 82 1

Gw 54 65 71 54 1

Table S4: Pairwise comparison of human classifications via Krippendorff’s «
Krippendorff’s « values, calculated for each pairwise comparison of classifications
as displayed in Table S4, quantify the variability in agreement among the classifiers,

which in turn, underlines the discrepancies in how annotators under different classi-

fication methods reacted to the instructions. The near-perfect agreement between the
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Cs and Cy classifications from traditional content analysis underscores the human
classifiers’ lack of responsiveness to minor yet crucial variations in the instructions.
In contrast, the moderate agreement between G and Gy supports HX’s assertion
that presenting the classification task as an incentivized coordination game among an-
notators enhances their responsiveness to these variations. Moreover, although CD
conducted the classifications without explicit instructions or guidelines on the criteria
used to annotate promises, the substantial agreement of their classifications with C'g
and Gg, along with moderate agreement with Gy, suggests that CD might have ad-
hered to a mental guideline that aligns more closely with the stricter definition of what
constitutes a promise.

Given that Gy, Gg, and C'D were not based on detailed written instructions, we fo-
cus our analysis on the Cs and Cy, benchmarks, where classification criteria were
explicitly defined and suitable for prompt repurposing. Between the two, we selected
Cw for presentation in the main text, as its weaker threshold (dprobablya rather than
acertainlyd) represents a more inclusive and arguably more natural operationaliza-
tion of the promise category. This choice also facilitates a more forgiving test of
the modelas alignment with human annotation. Nevertheless, for completeness and
transparency, we report LLM classification results using all five benchmark datasets in

here.

C.1.2. Original Instructions

Figure S4 displays the original codebook used by HX for their content analysis, which
we repurposed as the basis for our prompts. Figure S5 shows the classification in-
structions given to subjects during the experiment, along with the additional verbal
guidance used to differentiate between weak and strong variations. These instructions
are a shortened version of the codebook, omitting the explicit classification criteria,

which were instead conveyed verbally during the experiment.

C.1.3. Prompt

We have considered four different prompts: a Basic prompt, B, and three variations
Og, Op, and Oy, of the original instructions used by HX in their traditional con-
tent classifications (Cs and C'yy). All our prompts share the same following sections:
“General Task”, “Context” and “Output Format”. “General Task™ briefly defines the
task in a single sentence; the “Context” section provides details about the type of play-
ers, game mechanics, and communication protocol; and the “Output Format™ section

provides a template for the model to follow when outputting its classification.
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Figure S4: P; - Original Instructions used for Content Analysis

Your task:
You will be given a list of messages. Your task is to evaluate whether each of the messages is:

* A statement of intent or promise

* Empty Talk

The messages were written by participants in a previous experiment (Experiment I). To evaluate the messages,
you need to first understand Experiment I. The pages beginning on page 2 describe Experiment I. Please read
those pages carefully. The message writer is in the role of subject B.

It is important for you to know more about how to code the messages before you read the instructions. Here
are your specific instructions for how you code the messages:

1. (Weak Promise) You should code a message as ‘‘A statement of intent or promise’’ if you think at
least one of the following conditions is probably satisfied.
(Strong Promise) You should code a message as ‘‘A statement of intent or promise’’ if you think at
least one of the following conditions is certainly satisfied.

a. The writer, subject B, indicates in the message he/she would do something favorable to
subject A or refrain from doing something that hurts subject A.

b. The message gives subject A reasons to believe or expect that subject B would do something
favorable to subject A or refrain from doing something that hurts subject A.

2. (Weak Promise) You should code a message as ‘‘Empty Talk’’, if the message does not probably satisfy
any of the above conditions.
(Strong Promise) You should code a message as ‘‘Empty Talk’’, if the message does not certainly
satisfy any of the above conditions.

3. You should independently code all messages. Do not discuss with anyone else in this room about how
to code the messages.

4. Your job is to capture what had been said rather than why it was said or what effect it had. Think
of yourself as a ‘‘coding machine.’’

5. When you complete the coding, go through the entire list of messages a second time to (1) review all
your codes and revise them if needed for accuracy; (2) make sure you code every message.

Figure S5: P; - Original Instructions used for HX Classification Game

Your task:
In this experiment, you will be given a list of messages. Your task in this experiment is to evaluate whether
each of the messages is:

¢ A statement of intent or promise

* Empty Talk

The messages were written by participants in a previous experiment (Experiment I). To evaluate the messages, you
need to first understand Experiment I. The next few pages describe Experiment I. Please read it carefully. The
message writer is in the role of subject B.

Subjects were also told:

Weak Promise treatment: ‘‘“You should classify a message as ‘Promise or Intent’ if, in your opinion, it includes
any statement of intent.’’
Strong Promise treatment: ‘‘You should classify a message as ‘Promise or Intent’ if, in your opinion, it is

certainly a promise.’’

The basic prompt, B, does not include a “Role Persona” section, and its “Classifica-
tion Task” section does not provide any description of what constitutes a “promise”.
Instead, it combines instructing to classify a message as a “promise” or as “empty talk”
with how to code this classification (1 for “promise”, 0 for “empty talk™) within the
same directive.

For the three prompts that are based on the original instructions, Og, Oy and Oy,

the “Classification Task” section uses the instructions provided by HX verbatim. We
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adopt the same weak and strong instruction variations they considered in their C'y and
Cjs treatments with the prompts Oy and Og. Additionally, we have considered a neu-
tral version, Oy, which does not use any additional adverbs (such as “probably” or
“certainly” used in Oy and Og, respectively) to qualify the verb “satisfied” in the con-
dition: “if at least one of the following conditions is <adverb> satisfied.” Moreover,
these three prompts, unlike B, include a “Classification Coding” section that outlines
how to code specific categories in the output (1 for promise and O for empty talk).
Lastly, because HX’s original instructions included the statement “Operate as a coding
machine”, which imposes a role, we also did not include an additional “Role Persona”
section in these prompts.

The prompts Og, Oy and Oy are displayed in Figure S6, while the basic prompt B is

displayed in Figure S7. The prompt presented in the main section is Oy .

Figure S6: P; - Prompt Og, Oy and Oy,

General Task
Evaluate a player’s message in an economic experiment game to determine if it constitutes a promise.
Context
Players: Two players, A and B.
Game Mechanics:
+ First, player A chooses between the two decisions ’'IN’ and ’OUT’.
+ If player A chooses ’'OUT’, each player receives $5.
+ If player A chooses 'IN’, player B chooses between the two decisions ’'ROLL’ or ’DON’T ROLL’ (a die).
+ If player A chooses ’'IN’ and player B chooses 'DON’T ROLL’, then player B receives $14 and A receives $0.
+ If player A chooses ’'IN’, and player B chooses 'ROLL’, player B receives $10 and rolls a six-sided die to
determine player A’s payoff. If the die comes up 1 (1/6 likelihood), player A receives $0; if the die comes up
2-6 (5/6 likelihood), player A receives $12.

+ In addition, each player receives $5 show-up fee for participating in the experiment.
— Communication: Prior to Player A’s decision to "IN’ or ’'OUT’, player B has the option to send a message to
player A.
— Task: Classify whether the message sent by player B constitutes a promise or not.
# Classification Task

[

(Og)- Classify a message as a "promise or a statement of intent" if at least one of the following conditions is
«+xcertainly+x satisfied:
(On)- Classify a message as a "promise or a statement of intent™ if at least one of the following conditions is

satisfied:
(Ow ) - Classify a message as a "promise or a statement of intent" if at least one of the following conditions is
*xprobably+x satisfied:

+ Player B indicates in the message he would do something favorable to player A or refrain from doing something
that hurts player A

+ The message gives player A reasons to believe or expect that player B would do something favorable to player A
or refrain from doing something that hurts player A.
(Og)~- If the message does not xxcertainlys+ satisfy any of the above conditions, classify player B’s message as
"Empty Talk".
(On)- If the message does not satisfy any of the above conditions, classify player B’s message as "Empty Talk".
(Ow ) - If the message does not *sprobably+x satisfy any of the above conditions, classify player B’s message as
"Empty Talk".
— Capture what had been said rather than why it was said or what effect it had.
— Operate as a "coding machine".
# Classification Coding
- Code player’s message as ‘1 if it’s a promise.
- Code as ‘0" if it’s an empty talk.
# Constraint
— Follow the below output format.
# Output Format
0/1

C.1.4. Additional Results

In Table S5, the columns labelled “no-CoT” and "CoT” represent the treatments where

0-shot-CoT prompting was not incorporated and was incorporated, respectively. As
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Figure S7: Pr - Prompt B

General Task
Evaluate a player’s message in an economic experiment game to determine if it constitutes a promise.
Context
Players: Two players, A and B.
Game Mechanics:
+ First, player A chooses between the two decisions ’'IN’ and ’OUT’.
+ If player A chooses ’'OUT’, each player receives $5.
+ If player A chooses 'IN’, player B chooses between the two decisions ’'ROLL’ or ’DON’T ROLL’ (a die).
+ If player A chooses ’IN’ and player B chooses 'DON’T ROLL’, then player B receives $14 and A receives $0.
+ If player A chooses ’IN’, and player B chooses 'ROLL’, player B receives $10 and rolls a six-sided die to
determine player A’s payoff. If the die comes up 1 (1/6 likelihood), player A receives $0; if the die comes up
2-6 (5/6 likelihood), player A receives $12.
+ In addition, each player receives $5 show-up fee for participating in the experiment.
— Communication: Prior to Player A’s decision to "IN’ or 'OUT’, player B has the option to send a message to
player A.
- Task: Classify whether the message sent by player B constitutes a promise or not.
# Classification Task
Classify player’s message as ‘1' if it’s a promise.
Classify as ‘0" if it’s an empty talk.
Constraint
Follow the below output format.
Output Format
0/1

[

=1 % ||

no-CoT CoT
CD Cs Cw Gs Gw CD Cy Cw Gs Gw

GPT-35 B 71 76 79 71 90 82 82 84 82 84
Os 71 76 79 71 90 79 84 87 79 92
Oy 68 74 76 68 87 74 79 82 74 87
Ow 68 74 76 68 87 76 82 84 76 90

GPT4 B 8 87 84 87 74 9% 90 87 95 76
Os 92 92 90 97 79 97 92 90 92 &4
Oy 92 97 95 97 84 92 92 95 92 90
Ow 8 95 96 90 &7 9% 95 97 90 92

Table S5: Overall Accuracy of Promise Classification in %.

can be observed in Table S5, GPT-3.5 demonstrates a negligible degree of responsive-
ness to the variations in the classification instructions of the prompts. Specifically,
in no-CoT treatment, B and Og, and Oy and Oy, generate identical classifications.
Moreover, the model’s classifications under Oy differ from those under Og with just
one additional message classified as “promise.”

CoT prompting consistently improves GPT-3.5’s performance and leads to a greater
degree of variation in the classifications across prompts. However, this variation does
not necessarily imply that CoT prompting improves GPT-3.5’s adherence to instruc-
tions. Ideally, if CoT prompting were effectively increasing the model’s responsive-
ness to instructional nuances, Oy, would demonstrate the highest performance in the
Gw benchmark, and Og in the G benchmark. Yet, Og consistently outperforms Oy .

Furthermore, more detailed instructions tend to deteriorate GPT-3.5’s performance: B
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no-CoT CoT
B 0Ogs Oyx Ow B 0Os Ox Ow

P 35 35 36 36 29 32 34 33
E 3 3 2 2 9 6 4 5

fp 92 92 95 95 6 84 90 .87

GPT-3.5

GPT-4 21 23 25 27 22 25 27 28

P
E 17 15 13 11 16 13 11 10
frp 55 .61 66 .71 S8 .66 71 74

Table S6: Aggregate classification results of different prompts

outperforms Oy, and Oy under all benchmarks except Gy, and Og only surpasses B
under the benchmarks characterized by weaker instructions, namely Cy and Gyy.
GPT-4 consistently outperforms GPT-3.5 except under GGy benchmark. In Table S6,
relatively larger variation in the number of messages classified as “promise” observed
for GPT-4 is indicative of the model’s responsiveness to the instructional variations.
Furthermore, its responsiveness to the instructional nuances is reflected to some degree
in its classification performance. As can be observed in Table S5, Oy consistently
achieves the highest accuracy scores under the Gy and C'y benchmarks, and under the
G s benchmark, Og and Oy are tied for the best performance. On the other hand, in no-
CoT treatment, O achieves the highest accuracy under the C's benchmark, surpassing
the performance of Og.

For GPT-4, CoT prompting does not consistently improve performance. The highest
performances for benchmarks C's and (G are achieved in no-CoT treatment using Og
or Oy. Conversely, the highest performances for benchmarks Cp, Cyy, and Gy are
achieved in CoT treatment using Og or Oy . Given the top performing results under
benchmarks with weaker “promise” classification conditions are achieved in CoT treat-
ment and the top performing results under the benchmark with the stronger “promise”
classification condition are achieved in no-CoT treatment suggests that CoT prompting

introduces a bias towards classifying messages as promises.

C.2. Promise lI: Public Good Game
C.2.1. Game and Data

Authors of (Arad, Hugh-Jones and Penczynski, 2024, henceforth AHP) carried out an
online experiment to understand which kind of communication predicts cooperation.

633 participants engaged in five identical 3-player public good games, each with dif-
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ferent anonymous opponents. In every game, the three players had the opportunity to
chat before making a decision using a built-in platform resembling WhatsApp. The
messages were classified according to the presence of a promise by two RAs. On the
basis of the free-flowing chat between the three players, the classification indicates for
each individual player, whether a promise was made. In total, 717 chat instances were
analysed for classification. The RAs reached consensus on 89.9% of the instances,
with a Krippendorff’s v of 0.798, indicating substantial inter-rater reliability. Within
these agreements, 53.3% were classified as “promise”, hence the two categories are

balanced in the dataset.

C.2.2. Original Instructions

In Figure S8, the original instructions are presented with certain sections omitted that
are not relevant to the prompt. Additionally, to accommodate the instructions on a
single page, various line spacings have been reduced. The actual format of the original

instructions is much easier to follow (see Arad et al. (2024) for further information).

C.2.3. Prompt

We have considered two distinct prompts: a basic prompt, B, and a prompt that is
the reframed version of the original instructions, O. Similar to the approach in the
“Promise I”” section, all our prompts include the same subsequent sections: “General
Task™, “Context,” and “Output Format”. The “General Task™ section briefly defines
the task in a single sentence. The “Context” section elaborates on the types of players,
game mechanics, and communication protocol. Finally, the “Output Format” section
outlines the template the model should use to format its classification output.

Since the classification instructions in the HX and AHP prompts are identical, B and
O closely resemble the prompts B and Oy from the “Promise I”” section, respectively.
Consequently, all information pertaining to prompts B and Oy in Section C.1.3 also
applies to B and O. Specifically for their 0-shot versions, the primary distinction lies
in the “Context” section. The “Context” section of the prompts introduced in Section
C.1.3 details the investment game and features a standalone message from player A to
B, whereas in this section, the “Context” section of the prompts describes the public
good game involving a conversation among three players.

The codebook of AHP, unlike that of HX, includes a set of examples accompanying
its classification instructions. AHP use these demonstrations to provide more nuanced
conditions for the “promise” and “empty talk” categories. This section is structured as

a sequence of examples, each followed by a remark that highlights a specific case of
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Figure S8: P;; - Original Instructions

In the excel file, you will find a list of messages written by participants in an online experiment on
individual and group investments.
The list consists of many conversations between groups of three participants.
Your task is to evaluate, for each conversation, whether each of the participants stated an intent or a
promise to take a particular course of action.
You will classify a participant’s message in a conversation into one of the two categories:

- A statement of intent or promise (1)

- Other (0)
To evaluate the messages, you need to first understand the experiment. The next page describes the
experiment, followed by more detailed instructions for your classification task.
(Explanation of the experiment is skipped)
Classification
Here are your specific instructions for how you code the messages.
1) You should code a participant’s message (including his/her entire text in the conversation) as &aA
statement of intent or promised if you think at least one of the following conditions is satisfied.

a. The writer indicates in the message he/she would take a certain course of action.

b. The message gives the other participants reasons to believe or expect that that the writer of the
message would take a certain course of action.
2) You should code a message as dotherda, if the message does not satisfy any of the above conditions.
3) You should independently code all messages. Do not discuss it with anyone else.
4) Your job is to capture what had been said rather than why it was said or what effect it had. Think of
yourself as a acoding machine.a
5) When you complete the coding, go through the entire list of messages a second time to review all your
codes and revise them if needed for accuracy. Make sure you code every message.

Examples

Let’s illustrate how promises may look like:
Participant 1: "all 200 then?"

Participant 2: "yes"

The "yes" of Participant 2 is a promise.

Participant 1: "Are we all just going to with max?a
Participant 2: "agree"

The "agree" of Participant 2 is a promise.
It would not include statements such as

Participant 1: "I think it’s best if we invest 200" or

Participant 1: "let’s do 200" or

Participant 1: "I have been doing 200 in the last round" or
Participant 1: "100 sounds good".

Rather than spelling out numbers such as 200, people might refer to "max" or "all in".
In a particular context, "let’s do it" may be a promise. For example:
Participant 1: "2002"

Participant 2: "let’s do it"

or similarly:

Participant 1: "150. player 2 are you in agreement?"

Participant 2: "hi sounds good"

It may include conditional promises (do something if someone else agrees).
For example, in

Participant 1: "happy with 200 if we all agree"...
Participant 2: "cool let’s do it"

Participant 3: "Yep."

In this case, all participants 1, 2 and 3 made promises.
But in

Participant 1: "200 each?"

Participant 2: "agree"

Participant 3: "agree"

only participants 2 and 3 make a promise, because "200 each?" does not make it clear that the first
participant *wills do 200 if the others do that as well.

Initial promises about which people later change their mind do not count:

Participant 1: "200"

Participant 2: "agreed"

Participant 3: "I suggest 100"

Participant 2: "I’'m happy with either"
Participant 2 is not making any promise here.

promise or empty talk classification, then more examples and subsequent remarks, and
so on. We adopted this “Example” section verbatim in O, modifying its format to align
with our prompt template: each example is separated and indexed with a subtitle, such
as “Example #1”, followed by the content of the example, and each remark section
between sets of examples is distinguished with a “Remark”™ subtitle, followed by the
remark. Consequently, unlike Oy from Section C.1.3 and prompt B, O includes an

“Example” section, although this additional section is incorporated into the prompt
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only for n-shot treatments.

In total, 11 chat examples are provided for AHP, making our n-shot treatment for O an
11-shot setup. Since we have adopted the example section of the original instructions
verbatim, the format of our prompt’s example section diverges from the conventional
<question, answer> format typically used in n-shot prompting. Instead, it includes ex-
planations between sets of examples. However, it also does not adhere to the traditional
n-shot-CoT prompting format of <question, explanation, answer>, as the provided ex-
planations (remarks) are sparse and do not offer detailed rationales for classifying sets
of messages. In summary, the “Example” section of O provides more information
than a traditional n-shot prompt but less than an n-shot-CoT prompt. Nevertheless, the
presence of remarks can still be seen as offering partial rationales, and therefore, their
inclusion in O is expected to enhance the model’s reasoning capabilities when CoT

prompting is utilised.

Figure S10: P;; - Prompt O

# General Task
- Evaluate each player in an investment game to
determine whether he makes a promise or not.

Players: Group of three.

Initial Endowment: 200 pence each.

Investment: Maximum 200 pence each.

Mechanics: Invested amount is doubled and
split equally.

# Context

Figure S9: P - Prompt B

# General Task — Communication: Players can chat before

- Evaluate each player in an investment game to investing.

determine whether he makes a promise or not. — Duration: Multiple rounds.

# Context # Classification Task

— Players: Group of three. — Classify a player’s message as "a statement

— Initial Endowment: 200 pence each. of intent or a promise" if at least one of the
- Investment: Maximum 200 pence each. following conditions is satisfied:

— Mechanics: Invested amount is doubled and + The message indicates that the player will
split equally. take a certain course of action.

— Communication: Players can chat before + The message gives others reason to believe
investing. or expect that the player will take a certain

— Duration: Multiple rounds. course of action

# Classification Task - If the message does not satisfy either of

the above conditions, classify it as an "Empty

— Classify a player as ‘1 if he made a promise. Talk".

- Classify as ‘0‘ otherwise.

— Capture what had been said rather than why it
# Constraints was said or what effect it had.
- Refrain from providing an explanation for your - Operate as a "coding machine".

classification. (only for no-CoT cases)

- Provide a final and single classification for
each player.

— Follow the below output format.

# Classification Coding

- Code player’s message as ‘1' if it’s a promise
or statement of intent.

- Code as ‘0" if it’s an empty talk.

# Output Format

p# - 0/1 # Examples (Only in m-shot treatment) (See

Figure S11)

# Constraints

- Refrain from providing an explanation for your
classification. (only for no-CoT cases)

- Provide a final and single classification for
each player.

— Follow the below output format.

# Output Format
P# : 0/1
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Figure S11: P;; - “Examples” for Prompt O

# Examples (Only in n-shot treatment)
## Example 1

### Chat

P1l: all 200 then?
P2: yes

### Classification
Pl: O

pP2: 1

## Example 2

### Chat

Pl: Are we all just going to with max?
P2: agree
### Classification

Pl: 0

P2: 1

## Example 3
##4# Chat

Pl: I think it’s best if we invest 200
### Classification

Pl: 0
## Example 4
### Chat

Pl: let’s do 200

### Classification

Pl: O

## Remark

— Rather than spelling out numbers such as 200, people might refer to "max" or "all in".
## Example 5

### Chat

Pl: I have been doing 200 in the last round

### Classification

Pl: 0
## Example 6
### Chat

Pl: 100 sounds good

### Classification

Pl: 0

## Remark

- In a particular contexts, "let’s do it" or "sounds good" may be a promise (examples 7 and 8).
## Example 7:

### Chat

Pl: 2007

P2: let’s do it

### Classification

Pl: 0

pP2: 1

## Example 8

### Chat

Pl: 150. player 2 are you in agreement?

P2: hi sounds good
### Classification

Pl: 1

P2: 1

## Remark

- A message may include conditional promises (do something if someone else agrees) (example 9).
## Example 9:

### Chat

P1l: happy with 200 if we all agree
P2: cool let’s do it

P3: Yep.

### Classification

Pl: 1 (conditional promise)

P2: 1
P3: 1
## Remark

— In example 10, only players 2 and 3 make a promise, because "200 each?" does not make it clear that
the first participant *willx do 200 if the others do that as well.
## Example 10

### Chat

Pl: 200 each?

P2: agree

P3: agree

### Classification
Pl: 0

P2: 1

P3: 1

## Remark

- Initial promises about which player later change their mind do not count (example 11).
## Example 11

### Chat

Pl: 200

P2: agreed (initial promise)

P3: I suggest 100

P2: I'm happy with either (P2 changes her mind)

### Classification

Pl: 1
P2: 0 (due to change of mind after an initial promise)
P3: 0
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C.3. Intra-team communication

Messages in L; and L;; datasets are generated by the intra-team communication pro-
tocol that was introduced in Burchardi and Penczynski (2014) and classified according
to the level-k of strategic reasoning. Teams of two subjects play as one entity and
exchange arguments as follows. Both subjects individually make a suggested decision
and write up a justifying message. Upon completion, this information is exchanged
simultaneously and both subjects can enter individually a final decision. The computer
draws randomly one final decision to be the team’s action in the game. The protocol
has the advantage of recording the arguments of the individual player at the time of the
decision making. Furthermore, the subject has incentives to convince his team partner

of his reasoning as the partner determines the team action with 50% chance.

C.4. Level-£ I: Jury Voting Game
C.4.1. Game and Data

In Celebi and Penczynski (2023), we propose a level-k£ model of strategic thinking in
jury voting (JV) games a la Feddersen and Pesendorfer (1998) and Guarnaschelli et al.
(2000). In juries of size 3 or 6, jurors receive informative signals (red or blue balls)
and then vote to acquit (blue) or convict (red) the defendant, with the jury decision
ideally matching the innocence (blue urn) or guilt (red urn) of the defendant. Looking
at juries under the unanimity rule for conviction, we show that the jury performance
depends on the strategic sophistication of jury members, which in turn depends on the
complexity of the task at hand.

Our model assumes non-strategic, random level-0 play, to which a level-1 player best-
responds by always voting according to the received informative signal. Given the
unanimity rule, the best response to informative voting by level-2 players is to strategi-
cally vote always “convict” to make a conviction more likely and rely on other voters
to acquit. For level-3 players, the best-response to always convicting is to play infor-
matively like level-1 players do.

The messages are independently classified according to this level-k model by two RAs.
The RAs are introduced to the level-k model and received detailed instructions about
characteristics of the individual level-k types.

The classification procedure starts with both RAs providing independent sets of classi-
fications. Then, both are anonymously informed about the classifications of the other
RA and have the possibility to simultaneously revise their own classification. This

revision process is repeated twice. After the process, the two RAs agreed on 93.2%
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(493) of the classifications.

As can be observed in Figure S7, the distribution of levels is non-degenerate and fea-
tures a heterogeneity of types, a hump-shape with mode behaviour at level-1, and
hardly any level-3 behaviour. This is a standard distribution commonly observed in
similar studies and hence represents the type of distribution to be expected when re-
searchers consider to classify such data (Camerer et al., 2004; Costa-Gomes and Craw-
ford, 2006; Burchardi and Penczynski, 2014; Crawford et al., 2013). Their agreed

classifications for 493 messages constitute the benchmark for the LLLMs in this study.

LO L1 L2 L3
fr 21 .49 29 .01

Table S7: Level Distribution

C.4.2. Original Instructions

We have omitted various sections of the original instructions to fit in the instructions
into a single page. The original instructions begins with a lengthy section regarding
the general theory of level-k£ modeling and its specific application to the experiments.
These sections aggregate to 3 pages of instructions. Furthermore, some sentences in
the instructions that were not related to the classification of instructions, such as how to
code certain concepts in the excel sheet, are also omitted. See Celebi and Penczynski

(2023) for the instructions in its entirety.

C.4.3. Prompt

The prompt O generated using the original instructions is presented in Figure S12.
The original codebook’s classification instructions for human annotators begin with a
“General Comments” subsection that notes the potential implicit nature of messages
and instructs annotators to classify messages at the level they believe is most likely
when uncertain. This section is followed by subsections for each level from O to 3, each
further containing “Characteristics”, “Examples” and “Note” subsections. The “Char-
acteristics” subsection outlines the observed traits of that level of thinking within the
voting game, while the “Note” subsection provides additional guidance for handling
ambiguous cases. The “Examples” subsections vary in number, with five examples for
level-0, three for level-1, eight for level-2, and three for level-3. There are no specific

comments provided for individual examples.
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Figure S12: Ly - Original Classification Instructions

General Comments:

Subjects do not necessarily describe every step of their thinking; therefore, it may not always be
obvious to decide which level they are. In many comments, any indications of a level of thinking may
be partial or implicit, you should then indicate the most likely level of reasoning of the player. If
the message indicates to simply refer to a previous message ("same as before/above"), then you can use
the previous message’s evaluation to determine the level of the current message. If you are unsure of
the level of the message, you should indicate the level you think is more likely.

Level-0 Player:

Characteristics: Chooses randomly, without justification or through some justification completely
unrelated to the task. Might not have understood the game or shows no interest in the game or in
thinking about it.

Examples:

"50 50 chance to get red at least 50 50 could also be 100 percent."

"I like blue, so I chose blue."

"Think it will be red again."

"definitely red this time"

"We have to go for red. No other way than that. I like turtles"

Note: Comments such as "It is obviously blue" or "Play red, trust me!" should not be considered as
level-0 thinking as these comments to some extent signal some level of understanding/interest of the
task. Such comments are likely to be level-1 comments yet without any additional information, you
should leave the specific cell empty.

Level-1 Player:

Characteristics: Always follows his own signal. The subject may argue in favor of playing his own
signal through some probability argument

Examples:

"Our signal is blue. Let’s play blue."

"The probability that the red ball we observe is out of the red urn is twice the probability that it is
out of the blue urn"

"1/3 of all teams is observing wrong color, so we would try to find out whether we have wrong or right
ball, keep with red."

Note: The key idea in defining a level-1 player is to identify some thinking process that signals the

subject’s interest/understanding of the task and the private signal. Furthermore, it is important that
the subject does not offer any argument acknowledging the potential votes of the other teams and how to
vote accordingly (i.e. adjusting the strategy given what others are expected to do).

Level-2 Player:
Characteristics: Assume that all other players almost always follow their signal (i.e. she assumes

almost all the other players are level-1 while an epsilon portion of them are level-0). Player does
offer an argument acknowledging the potential votes of the other teams and how to vote accordingly
(i.e. a best response given others are most likely playing their signal). In other words, if you

identify any comment that indicates that the subject assumes (or considers the case) where the other
players in her group play their signal, you should consider the possibility that the subject is a
level-2 player.

Examples:

"Let’s take red because if the urn is red and we got the opposite color and we take blue, the decision
will be blue."

"We need to chose Red. If we are the only ones who picked blue, then the urn is red and we guess
correct If the urn is blue, then the other guys will pick blue so there will be at least one blue vote
and we win as well If the others guys (also blue) think the same way then we lose But this is too many
ifs"

"I have a blue ball. If we have the blue urn, someone else also has a blue ball and as a result our
group will chose blue regardless of my vote. If we have the red urn, I am the only one with the blue
ball and if I vote blue, we will chose the wrong urn. So I should vote for red."

"In case two teams choose red and one chooses blue, blue will be taken. That means that choosing red
has a higher chance of being a good decision."

"I guess this is more about luck because there is no way to know it for sure. I would say blue just
because of the higher probability. Also I like turtles Also it is likely that one other team will pick
blue and then it is that color anyways"

"There is no point for us to take blue I think the chances for us to get the right color are higher if
we stick with red" [red ball is observed]

"I suggest red because we donat hurt anyone with this decision If the others go for blue because they
have a blue ball, the committeeas decision will be blue regardless of our decision"

"We could be the deciding vote for blue if the other two choose red. Choosing blue isnt as helpful

as choosing red, because: only one blue ball can overturn our whole decision but only a unanimous
decision for red can help us the same way"

Note: 1In order to discern the two types, you should look for more than any trivial arguments such as
the ones given under level-1. There may be cases where the message starts as a level-1 argument and
then as the subjects elaborates on her reasoning, she starts considering the strategy of the other
teams and justify her decision accordingly (see the third example above). In such cases, this message
should be considered as level-2. The acknowledgment of other teams’ voting strategy may not always be
obvious or may be worded differently such as "hurting the other’s decision" or "not being helpful" (see
the last three examples above)

Level-3 Player:

Characteristics:

Assumes that almost all other subjects are level-2 players (partially degenerate beliefs). The
reasoning in a level-3 player message will have similarities with a level-1 player message but it will
have additional arguments indicating that she assumes others are level-2 players.

Examples:

"In my opinion, if there is another person with blue they may be afraid of voting blue so we should
vote blue to make sure."

"Let’s now pick the shown colour because the others now will probably enter their opposite colour."
"Risky to vote blue but others may not vote blue even when they draw blue. I say we vote blue."

Note: As stated above, level-3 players are likely to follow their signal like a level-1 player yet
they will argue to do so through a much more intricate argument (unlike a level-1 player merely stating
probabilities to argue her action). Level-3 players are rare. Higher levels (level-4 etc.) are
assumed to not occur; therefore, you should consider only the first 4 levels of thinking.
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These classification instructions are incorporated verbatim into the prompt O, preserv-
ing the structure and format of the original level subsections and their respective “Char-
acteristics”, “Examples” and “Note” subsections. The only exception is the “Note”
section of the level-0 subsection. In the codebook, this “Note” section instructs anno-
tators to leave a message unclassified if it contains ambiguous phrases like “Play red,
trust me!” that likely indicate level-1 thinking but lack additional context to confirm it.
Given that the messages considered for classification are those where both annotators
found enough information to classify, this specific instruction is redundant for the mod-
els and therefore omitted in the prompts. Additionally, the instruction in the “General
Comments” section to classify messages based on the most likely level when unsure
contradicts this instruction to leave messages unclassified when there is not enough
context. Hence, to maintain instructional consistency with our prompts, we adhered to
the “most likely level” instruction. Lastly, this modification also avoids the risk of the
model misinterpreting the option to leave messages unclassified and incorrectly gen-
eralising it to other unrelated but potentially ambiguous messages and other levels of
thinking.

Prior to the classification instruction section, the codebook includes a three-page expla-
nation of the experiment, general level-£ theory, and the application of level-k theory
to the voting game. We have omitted these sections and instead included the most
essential information in the “Context” section of the prompt. This section provides
details on general game mechanics and communication protocols, aimed at providing
the model with necessary context and textual patterns for its classification task. One
should consider the provided information in the “Context” section of the prompt as an
executive summary of these sections. Hence, we made the implicit assumption that
GPT has prior knowledge on the jury voting game, the general level-£ theory, and the
application of the level-k to the voting game. We have indeed investigated this as-
sumption by asking a series of questions to both models, and ensured that it does have
a detailed knowledge of the theory and the jury voting game. Hence, both models has
enough prior knowledge to be simply presented with an executive summary of these
sections. On the other hand, either model is unable to apply the level-£ theory to the
jury voting game in a correct fashion to autonomously define each level of thinking for
the game. Hence, without the provision of specific characteristics of different levels
of thinking, it is unclear how GPT could interpret them or distinguish, say, a level-
1 thinker from a level-2 thinker. Given this uncertainty, we do not consider a basic
prompt B for this classification task.

In the “General Task” section, the model is instructed to classify a player’s level of
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strategic thinking in a voting game. This is followed by the “Role Persona” section,
where the model is instructed to act as a behavioural economist specialised in level-k
modelling, strategic thinking, and text classification. Other auxiliary sections, such as
“Classification Process”, “Constraint”, and “Output Format”, follow the format pre-
sented in Section 1.B.1, and are almost identical to prompts from previous sections
C.1.3and C.2.3.

Figure S13: L; - Prompts O

# General Task

- Classify player’s level of strategic thinking in a voting game

# Role Persona

- Act as a behavioural economist specialized in level-k modeling, strategic thinking and text classification.

# Context (see Figure S14)

# Classification Task

— Classify a player’s level of strategic thinking as 0, 1, 2 or 3 based on the message provided.

— Use the below characteristics, examples and notes provided for each level to determine your classification.

## Level-0 Player

### Characteristics

— Chooses randomly, without justification or through some justification completely unrelated to the task.

- Might not have understood the game or shows no interest in the game or in thinking about it.

- Provides a vote without a clear justification to the probability of the game or strategic reasoning.

### Note

— Comments such as ’'It is obviously blue’ or ’Play red, trust me!’should not be considered as level-0 thinking as
these comments to some extent signal some level of understanding/interest of the task. Such comments are likely
to be level-1 comments.

## Level-1 Player

### Characteristics

- Always follows his own signal.

- The subject may argue in favor of playing his own signal through some probability argument.

### Note

— The key idea in defining a level-1 player is to identify some thinking process that signals the subject’s
interest/understanding of the task and the private signal.

- It is important that the subject does not offer any argument acknowledging the potential votes of the other
teams and how to vote accordingly (i.e. adjusting the strategy given what others are expected to do).

## Level-2 Player

### Characteristics

— Assume that all other players almost always follow their signal (i.e. a level-2 player assumes almost all the
other players are level-1 while a small portion of them are level-0).

— Player does offer an argument acknowledging the potential votes of the other teams and how to vote accordingly
(i.e. a best response given others are most likely playing their signal).

- 1f you identify any comment that indicates that the subject assumes (or considers the case) where the other
players in her group play their signal, you should consider the possibility that the subject is a level-2 player.
### Note

— In order to discern between level-1 and level-2 types, you should look for more than any trivial arguments such
as the ones given under level-1.

- There may be cases where the message starts as a level-1 argument and then as the subjects elaborates on her
reasoning, she starts considering the strategy of the other teams and justify her decision accordingly (see the
fifth example above). In such cases, this message should be considered as level-2.

— The acknowledgment of other teams’ voting strategy may not always be obvious or may be worded differently such
as "hurting the other’s decision" or "not being helpful" a (see the last three examples above)

## Level-3 Player

### Characteristics

— Assumes that almost all other subjects are level-2 players (partially degenerate beliefs).

— The reasoning in a level-3 player message will have similarities with a level-1 player message but it will have
additional arguments indicating that she assumes others are level-2 players.

### Notes

— level-3 players are likely to follow their signal like a level-1 player yet they will argue to do so through a
much more intricate argument (unlike a level-1 player merely stating probabilities to argue her action).

— Level-3 players are rare.

## General Comments

- Players do not necessarily describe every step of their thinking; therefore, it may not always be obvious to
decide which level they are. In many messages, any indications of a level of thinking may be partial or implicit.
In such cases provide the most likely level of reasoning from the messages.

- If you are unsure of the level of the message, you should indicate the level you think is more likely.
Constraint

— Only provide a single level classification.

- Follow the below output format.

# Output Format

0/1/2/3

3*
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Figure S14: L; - Prompt O - “Context” Section

# Context

- Teams of two players, part of larger groups, draw a colored ball from an urn, play a voting game with their
group to guess the color of the urn for multiple periods.

- Teams are randomly paired each period. Teams consist always of 2 players.

- Teams are grouped into either 3 or 6 teams per group.

- Each period, a group is assigned to an urn with a blue or red color with equal probability.

- An urn only contains blue and red balls. Blue urn has twice more blue balls than red balls and a red urn has
twice more red balls than blue balls. The color of the ball has a 2/3 chance of matching the urn’s color.

- After the urn with either red or blue color is assigned to a group, each team within a group draws a ball from
the urn to infer the urn’s color. The drawing can be with or without replacement depending on the period.

— Teams do not know the color of the urn. They do not know the colors of the balls picked by the other teams in
their group. They only know the color of their own ball.

- The group’s objective is to correctly guess the color of the assigned urn.

- Each team in a group provides a single vote. A team votes for either the color red or blue. Group’s decision
is determined based on the aggregation of its teams’ votes.

— Teams communicate internally to decide on a vote for the urn’s color. If all votes are red, the group decision
is red; any blue vote results in a blue group decision.

— Teams do not observe the votes of the other teams in their group.

— Teams weigh their own ball’s color and strategize their vote considering the group’s outcome.

— Players exhibit levels of strategic reasoning (0 to 3), influencing their decision-making and messaging.

Figure S15: L; - Prompt O - “Examples” Section

# Classification Task
## Level-0 Player

### Characteristics
### Examples

1. "50 50 chance to get red at least 50 50 could also be 100 percent."
2. "I like blue, so I chose blue."

3. "Think it will be red again."

4. "definitely red this time"

5. "We have to go for red. No other way than that. I like turtles"
### Notes

## Level-1 Player
### Characteristics
### Examples

1. "Our signal is blue. Let’s play blue."

2. "The probability that the red ball we observe is out of the red urn is twice the probability that it is out of
the blue urn"

3. "1/3 of all teams is observing wrong color, so we would try to find out whether we have wrong or right ball,
keep with red."

### Notes

## Level-2 Player
### Characteristics
### Examples

1. "Let’s take red because if the urn is red and we got the opposite color and we take blue, the decision will be
blue."
2. "We need to chose Red. If we are the only ones who picked blue, then the urn is red and we guess correct If

the urn is blue, then the other guys will pick blue so there will be at least one blue vote and we win as well If
the others guys (also blue) think the same way then we lose But this is too many ifs"

3. "I have a blue ball. If we have the blue urn, someone else also has a blue ball and as a result our group
will chose blue regardless of my vote. If we have the red urn, I am the only one with the blue ball and if I vote
blue, we will chose the wrong urn. So I should vote for red."

4. "In case two teams choose red and one chooses blue, blue will be taken. That means that choosing red has a
higher chance of being a good decision."

5. "I guess this is more about luck because there is no way to know it for sure. I would say blue just because

of the higher probability. Also I like turtles Also it is likely that one other team will pick blue and then it
is that color anyways"

6. "There is no point for us to take blue I think the chances for us to get the right color are higher if we
stick with red" [red ball is observed]

7. "I suggest red because we donat hurt anyone with this decision If the others go for blue because they have a
blue ball, the committeeas decision will be blue regardless of our decision"

8. "We could be the deciding vote for blue if the other two choose red. Choosing blue isnt as helpful as
choosing red, because: only one blue ball can overturn our whole decision but only a unanimous decision for red
can help us the same way"

### Notes ...

## Level-3 Player

### Characteristics

### Examples

1. ™"If everyone else assumes others play their own signal then they will always play red. Since I have the blue
ball, it is more likely that we have the blue urn so I will vote blue"

2. "Let’s now pick the shown colour because the others now will probably enter their opposite colour."

3. "Risky to vote blue but others may not vote blue even when they draw blue. I say we vote blue."

### Notes
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X-Y games (CGR notation) a T,Ty Pie games (cGr notation) a Ty, T2

Symmetric Payoffs (SL) X 55 Symmetric Payoffs (S1) L@ 5,5
Y 5,5 R#H 5,5

B® 55

Slight Asymmetry (ASL) X 5,51 Symmetric Payoffs (S2) L (%) 6,6
Y 51,5 R# 6,6

B(®) 55

Moderate Asymmetry (AML) X 5,6 Moderate Asymmetry (AM2) L ($) 5,6
Y 6,5 R#H 6,5

B® 65

Large Asymmetry (ALL) X 510 Moderate Asymmetry (AM4) L ($) 6,7
Y 10,5 R# 7,6

B® 7.5

Table S8: Payoff structure of coordination games.

C.5. Level-k Il: Asymmetric-Payoff Coordination Games
C.5.1. Game and Data

Finally, van Elten and Penczynski (2020) study asymmetric-payoff coordination games
(APC) introduced by (Crawford et al., 2008, henceforth CGR) and provide textual data
supporting the result that the incidence of level-£ reasoning is low in symmetric, pure
coordination games and high in asymmetric, “battle of the sexes”-type coordination
games. The dataset is of particular interest, because its text analysis involves the clas-
sification of non-trivial level-0 beliefs.

Table S8 describes the four X-Y games and four Pie games. In contrast to payoff-
symmetric games (in bold), payoff-asymmetric games feature a higher coordination
payoff 7 for one of the two players, depending on the action on which they coordinate.
The miscoordination payoff is O for both players. The choice is between letters X and
Y in the X-Y games and between 3 pie slices (L, R, B) which are identified by ($, #,
§) and of which B is uniquely white.

The dataset consists of 851 messages gathered through intra-team communication as
described in Section C.3. All messages are in German. The benchmark classifications
are derived from the agreed assessments of two RAs.?’ The RAs provide a lower bound
and an upper bound for the level of reasoning in each message. They also identify
whether any label or payoff salience argument is present, and if so, classify the type of
salience.

Tables S9 and S10 show the distributions of the lower and upper bound levels where

20See van Elten and Penczynski (2020) for details.
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L,, indicates the level-n strategic thinking. Tables S11 and S12 show the distributions
of the benchmark classifications for label and payoff salience. In these tables, “~”
indicates indifference to label or payoff salience, “no” signifies that there is no mention
of a payoff or label salience in the text, H and L denote high and low payoff salience
respectively, and §, #, $, X and Y represent the label salience for the game choice

with the same tag.

Table S9: Level distributions of the benchmark (Lower Bound)
Ly L Ly Ly Ly Ls

f 504 334 143 016 .002 -

Table S10: Level distributions of the benchmark (Upper Bound)
Ly Ly Ly Ly Ly Ls

341 370 234 .042 .006 .007

Table S11: Distribution for label salience classification of the benchmark
§ # ~ $ X Y no

f 159 .025 .024 .107 .103 .002 .581

Each participants goes through all eight games prior to any communication exchange.
We dropped those messages in which subjects refer to a reasoning that they laid out
in an earlier round, as we did not want the LLM to get into assigning reasoning from

earlier messages as the RAs did. In total 104 messages (12.2% of the data) are dropped.

C.5.2. Original Instructions

This codebook displayed in Figures S16 and S17 is the most detailed and extensive

among those used in this study.

C.5.3. Prompt

No basic prompt B is considered here for the same reasons outlined in Section C.4.3.
Using the original codebook, prompt O is generated as shown in Figures S19 and S20.
The “Context” sections of the prompt begin with an identical short subsection on game
mechanics, followed by a subsection on the two coordination games played in the ex-
periments where each game type (Pie and X-Y) is briefly introduced, and payoff tables

for the variations of each game type is provided in a similar table format as in Table S8
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Table S12: Distribution for payoff salience classification of the benchmark
~ H L no

722228 .039 .008

in Markdown format. The theory subsection provides an executive summary consisting
of a series of subsections, each with descriptions of the fundamental concepts detailed
in the original codebook. The first subsection, “Salience in Decisions”, describes the
concept of salience in the games. This is followed by a “Level-k Model” subsection,
which details information on level-0 thinking, followed by a brief level-1 thinking de-
scription. We omit explicit description for each of the higher levels of thinking, and
instead provide a brief generalised characterisation of a level-£ thinker for &£ > 1.

In the “Classification Task™ section, we only provide two lines of instructions that
simply instruct the model to classify the payoff or label salience, and lower and upper
bound of level of thinking. Additionally, we omit any examples in either of these
subsections. In other words, we do not concern ourselves too much with whether the
model fully “understands” the concepts by considering a significantly brief way of
presenting the background information and the classification instructions.

Prompt O’s “General Task”, “Role Persona”, “Classification Coding”, “Constraint”,
“Classification Process” and “Output Format” sections are as previously defined in
Section 1.B.1. However, differently from the prompt template, this prompt has an
additional section called “Input Format”. Human annotators receive contextual infor-
mation about the game, the team, and the subject’s initial decisions, which are essential
for understanding the message. The exact game being played, as shown in Figure S8,
and the team of the player are necessary for both human annotators and GPT models
to effectively grasp the context of the message. Consequently, unlike in our previous
classification experiments, GPT is provided not only with the subject’s message but
also with information about subject’s team, the game she is referring to, and her ini-
tial decisions. The “Input Format” section provides the template for the input that the
model receives. By including this section in the prompt, we aim to help the model
better orient itself when provided with the defined input string.

O without any demonstrations establishes a 0-shot baseline for the prompt, and en-
ables us to investigate the effect of incorporating demonstrations (n-shot prompting)
in a modular fashion. We do so by developing an “Examples” section. The examples
provided in this section are the examples provided in the original codebook. The orig-
inal classification instructions, and therefore prompt O, include only five examples.

These examples provide very limited coverage given the array of potential examples
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Figure S16: L;; - Original Instructions - Part 1

Classification Instructions

Thank you for participating in this experiment. In this section you find instructions as to how this
experiment works. To take part in the experiment, we assume that you are familiar with the level-k
model as it has been introduced by Nagel (1995) and also with the concept of team reasoning as it has
been introduced by Schelling (1960). In the experiment, subjects play pure coordination games with
symmetric and asymmetric payoffs. We assume that you are familiar with the concept of coordination
games as they have been carried out by Crawford, Gneezy and Rottenstreich (2008).

However, in order to clarify potential questions of terminology, we reproduce the main features of
the level-k model and the concept of team reasoning. In addition we provide detailed experimental
instructions, which explain the game and also give you a short introduction to coordination games.
Please read all information carefully in order to know how the original experiment proceeded.
Experimental Setting

Introduction
This section describes the main features of the experiment. Subjects are randomly assigned into teams
of two players. For a given strategic situation, each player makes suggestions for the team action

at two points in time. First, the so-called "suggested decision" and a justifying written message
are exchanged between the team partners simultaneously. After this, the "final decision" is taken
individually by each team player. The computer chooses randomly one of the two final decisions to
obtain the "team’s action."

All teams play a series of eight coordination games. Coordination games are characterised by
situations in which all parties can realize mutual gains, but only by making mutually consistent
decisions. Each team is randomly matched with another team. If a matched pair of teams both decide on

identical team actions, they coordinate their behavior successfully and are rewarded with a payoff.
However, 1if both teams choose different team actions, they fail to coordinate their behavior and do not
receive any payoff. Thus both teams are motivated solely to coordinate their strategies in order to
obtain an outcome that is best for them. The following example illustrates a random coordination game
in which each team decides on one strategy X, Y or Z simultaneously. Only if both teams make mutually
consistent decisions they receive a payoff of 2 units each.

Team 2
X Y Z
X (2,2) (0,0) (0,0)
Team 1 Y (0,0) (2,2) (0,0)

Z (0,0) (0,0) (2,2)
The payoff is represented through an experimental currency unit ("Taler"). One Taler is worth 0,40
Euro. 1In a symmetric coordination game each team is rewarded the same payoff if they coordinate their
behavior successfully. 1In asymmetric coordination games players usually disagree on which action
they prefer to coordinate. There may be one outcome where one team disproportionately benefits in

comparison to the other team.

X-Y Coordination Games

All subjects face a series of eight coordination games composed of four "X-Y Games" and four "Pie
Games". We reproduce the main features and attributes of those games in the following. "X-Y Games"
are characterised by a binary choice option "X" or "Y". The assignment of payoffs for successful
coordination is indicated in brackets. Example:

X [6 Taler for Team 1 and 5 Taler for Team 2]

Y [5 Taler for Team 1 and 6 Taler for Team 2]

If a matched pair of teams both decide on the identical team action "X", team one receives 6 Taler and
team two receives 5 Taler. If both teams chose "Y", the assignment of payoffs would be reversed. If
both teams chose decisions with different labels "X" and "Y", neither team receives any payoff. The
payoff differences vary within the four "X-Y treatments".

Pie Coordination Games

"Pie Games" are characterised by a visual representation of different choice options as indicated in

the following figure. Each team simultaneously selects one of the three "pie slices". Each slice
is labeled with an abstract decision label §, $ or #. The assignment of payoffs for successful
coordination is indicated in brackets within the three slices. The first number represents the

quantity of Taler for team one, the second number the quantity of Taler for team two.

——Image of a Pie with payoffs-- (omitted see van Elten and Penczynski (2020) page 47)

If a matched pair of teams both decide on the identical team action "#", team one receives 7 Taler and
team two receives 6 Taler. If both teams chose decisions with different labels §, $ or #, neither team
receives any payoff. The payoff differences alternate within the four "Pie treatments".

Note that the "X-Y Game" and the "Pie Game" might both contain one alternative that is visually
distinctive from another alternative. For instance, the unshaded bottom slice is visually distinctive
from the two upper slices ($ and #) that are shaded in a light grey color. We refer to a visually
distinctive alternative as label-salient. Moreover an alternative might be payoff-salient in a way
that it is distinctive with respect to its payoff structure. The concept of label and payoff salience
is important for the classification process.

Treatment Overview

We conducted six sessions in Mannheim and three sessions Heidelberg. All sessions consist of the

same eight treatments (four "X-Y games" and four "Pie games"), however the sequence of treatments

in Mannheim is different from the sequence of treatments in Heidelberg. The following two tables
provide a brief overview over the sessions conducted in Mannheim (session 1-3, session 7-9 [rounds 7
and 8 moved to the beginning]) and the sessions conducted in Heidelberg (session 4-6). The payoff for
successful coordination is indicated in brackets. The first number represents the quantity of Taler
for team one, the second number represents the quantity of Taler for team two, if both teams coordinate
their behavior.

—-Table presenting games played in each round in each experiment-- (omitted see van Elten and
Penczynski (2020) page 49)

that can be generated by combining different levels of thinking with payoff or label
salience, and with the two types of coordination games (X-Y and Pie Games). Further-

more, three out of the five examples that involve either payoff or label salience lack
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Figure S17: L;; - Original Instructions - Part 2

Classification Process

Remember: Each player makes suggestions for the team action at two points in time. First, the
so-called "suggested decision" and a justifying written message are exchanged between the team partners
simultaneously. After this, the "final decision" is taken individually by each team player. The
computer chooses randomly one of the two final decisions to obtain the "team’s action." Your task is

to classify the written messages into different categories. In the following we will describe the
classification process for the analysis of the experiment.

Level k Model

Notation of the level k£ model

It is assumed that you are familiar with the level-k model as it has been introduced by Nagel (1995

or represented by Camerer (2004). The model here is extended to incorporate salience in the level-0
belief according to Bacharach and Stahl (2000). 1In order to clarify potential questions of terminology
and introduce the main features of the model we quickly reproduce the main features of the model in the
terminology used in this document. The level-k model of bounded rationality assumes that players only
think through a certain number (k) of best responses. The model has four main ingredients:

Population distribution: This distribution reflects the proportion of types with a certain level k €
No = {0,1,2,3,4,5,...}.

Level-0 distribution: By definition, a level-0 player does not best respond. Hence, his actions are
random to the game and distributed randomly over the action space. In our case, the action space is A
= {{X},{Y}} or A = {{8},{$},{#}}. The model incorporates salience by assuming higher probabilities
in the level-0 distribution for actions that are visually distinctive (salient). An action might be
salient in terms of payoffs and in terms of labels. In the "X-Y" treatments, the level-0 distribution
would not assign a uniform probability of 0.5 to each possible action, but p > 0.5 to the salient one
and q; < p for the remaining actions. In the "Pie" treatments, the level-0 distribution would not
assign a uniform probability of 1/3 to each possible action, but p > 1/3 to the salient one and ¢; < p
for the remaining actions.

Level-0 belief: In the model, the best responses of players with k > 0 are anchored in what they
believe the level-0 players play. Their level-0 belief might not be consistent with the level-0
distribution. For best responding, all that matters is the expected payoff from choosing an action
from the action space A = {{X},{Y}} or A = {{8},{8},{#}}. 2 subject would therefore decide on a
particular action, when the probability is highest, that the other team chooses the same action.
Population belief: Players do not expect other players to be of the same or a higher level of
reasoning. For a level-k player, the population belief is therefore defined on the set of levels
strictly below k. It follows that level-0 players have no defined belief, level-1 players have

a trivial belief with full probability mass on {0}, level-2 players have a well defined belief on
{{0},{1}}. From level 3 higher order beliefs are relevant as level-3 players have to form a belief
about level-2’'s beliefs.

Characterisation of the different levels

Level 0 The player does not exhibit any strategic reasoning whatsoever. Different versions of this
might be randomly chosen or purely guessed actions, misunderstanding of the game structure or other
non-strategic ’reasons’ for picking a location, e.g. by taste or salience. It is important that no
best-responding to the other’s play occurs. There could be considerations of what others might play,
but without best responding to it. Examples: "Well, it’s a pure guess", "There are no arguments.
Simply choose any."

Level 1 This player best responds to some belief about the other teams’ action. However, he does not
realise that others will be strategic as well. Example: "They are probably picking X, so we do as
well", "The other team would naturally go for the visual distinctive bottom slice, no?"

Level 2 This player not only shows the basic strategic consideration of playing best response
(matching/mismatching), but also realises that other players best respond as well according to the
belief they entertain. A level-2 player clearly contemplates how the other player might best respond
to his frame. The player plays a best response to this hypothesised consideration. Example: "The
other team may think we are most attracted to the alternative # with the highest payoff. 1In order to
coordinate our behavior we should also choose the # slice."

Level 3 This player realises that others could be level-2 and reacts by best responding to the
associated expected play. Put differently, he realises that others realise that others best respond
to their initial belief. Therefore, a level-3 player clearly states that his opponent expects that he
(the level-3 player at question) best-responds to a certain belief.

Level 4, 5, ... The process goes on in a similar fashion. A level k player realises that other
subjects could be level k-1 and reacts by best responding to the associated expected play.

information indicating the appropriate classification for these categories. As a result,
we, additionally, explored the possibility of providing a more balanced and larger set of
examples with prompt O, . This prompt is identical to prompt O except in its “Exam-
ple” section, and is displayed in Figure S21. With this alternative “Example” section,
we attempted to cover a broad array of possible case with a total of 16 demonstrations,
four for each level from O to 3. We maintained the existing 5 examples from the orig-
inal codebooks, and added additional examples to balance the categories. None of the
new examples are from the dataset, and generated by us. All new examples are gen-
erated with the aim to explicitly depict their respective level of thinking. For instance,

level-2 messages contain variations of the pattern “They think that I do <X>”, and
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Figure S18: L;; - Original Instructions - Part 3

Category 1: Lower and upper bound on the level of reasoning

Your aim

is to classify the written messages into the underlying level kK € Ng = {0,1,2,3,4,5,...} of reasoning.
For a given statement it might not be possible to exactly determine the underlying level of reasoning.
To extract as much information as possible, we ask you to indicate a lower and an upper bound on the
level of reasoning.

For the lower bound on the level of reasoning, you should ask yourself: "What is the minimum level of
reasoning that this statement clearly exhibits?" Once noted, you should be able to say to yourself:
"It seems impossible that the players’ level of reasoning is below this number!" Here we ask you to be
very cautious with the classification, not giving away high levels easily.

The upper bounds should give the maximum level of reasoning that could be interpreted into the
statement. Therefore, you should ask yourself: "What is the highest level of reasoning that can

be underlying this statement?" Once noted, you should be able to say: "Although maybe not clearly
communicated, this statement could be an expression of this level. If the player reasoned higher than
this number, this was not expressed in the statement!" For both lower and upper bound, please refer to
the characterisation of the different levels.

There are two necessary conditions for a player to exhibit a level greater than 0. First, the player
has to be responsive to the salience of the games’ framing. Secondly, the player has to be strategic
in best-responding to his level-0 belief, which is shaped by label or payoff salience. If he did not
react to salience, he would have no reason to chose one over the other object, resulting in random
level 0 play.

For this category, the excel-sheet for the classification will feature a drop-down menu where you can
choose upper and lower bounds between 0 and 5. If no inference can be made since nothing or nothing to
the point is written, you can choose not applicable (n/a).

Category 2: Level-0 belief

Your aim

is to indicate the underlying level-0 belief that is connected with the lowest possible level of
reasoning. If level reasoning is observed in the statement, there has to be a starting point in

the argument which states an attraction or aversion to one alternative. This is then not derived by
strategic reasons, but is an intuitive reaction to the framing of the coordination game.

Otherwise, level reasoning would not occur. Please indicate the underlying level-0 belief that is
connected with the lowest possible level of reasoning. Note that the level-0 belief of a person
reasoning on an odd level, i.e. level 1, 3, 5, etc. 1is always with respect to how a player of the
opposite side intuitively reacts to the framing. The belief of a person reasoning on an even level,
i.e. 1level 2, 4 etc. 1is always with respect to what the opposite type believes about the own type’s
intuitive reaction.

There are two kinds of framing in these games. On the one hand, subjects might react to the framing
of the coordination game (label salience). Imagine a subject that you classify to be level-1. It
might communicate that the other team is most attracted to the visual distinctive white bottom slice §
and therefore proposes A§ as team decision. A subject that you classify to be level-2 might indicate
that the other team believes that one’s own team is more likely to choose "X", because this alternative
is mentioned first on the screen. To reflect a level-0 belief of an attraction to X or Y , or to #,
§, or $, the excel-sheet features a drop-down menu that allows to indicate such a preference or an
indifference. If such a preference or indifference over labels is not indicated, or if the subjects’
level of attractiveness cannot be distinguished or is not expressed clearly within the message, please
indicate that the level-0 belief from the message does not exhibit any label salience.

On the other hand, subjects might respond to the payoffs (payoff salience). For example, consider

a subject that you classify to be level-1. It might communicate that the other team is most likely

to choose alternative X as it offers the highest payoff to this very team. Or, a subject that you
classify to be level-2 might indicate that the other team remains of the conviction that one’s own
team is not attracted to the action that gives one’s own team high payoffs. To reflect the exhibited
level-0 beliefs you can indicate in the excel-sheet whether the team that the level-0 belief is formed
about is believed to be attracted to a) the action that yields --under coordination-- a higher payoff
for this team, to b) the action that yields --under coordination-- a higher payoff to the other team
or c) is indifferent. If no such preference or indifference over salient payoff actions is indicated,
please indicate that the level-0 belief from the message does not exhibit any payoff structure.

Please note that payoff and label salience are not mutually exclusive, please indicate both if

both is expressed in the message. Finally, for players whose lower bound is 0, the level-0 belief
classification can be used to indicate whether a level-0 player states for his action a preference with
respect to label or payoff salience.

Classification Summary

In coordination games both teams are motivated solely to coordinate their strategies in order to obtain
an outcome that is best for them. For a given strategic situation, each player proposes a suggested
decision and writes a justifying written message to the team partner. Your task is to classify the
written messages into different categories that are summarized in the following:

Category 1 Please classify the written messages into the underlying level k € Ngo = {0,1,2,3,4,5,...}
of reasoning. Provide the lower and an upper bounds on the level of reasoning as described.

Category 2 Please indicate the underlying level-0 belief that is connected with the lowest conceivable
level of reasoning. Information about the underlying level-0 belief that one might obtain out of

the communication is how subjects respond to payoffs (payoff salience) and how subjects react to the
framing (label salience) of the coordination games.

level-3 messages explicitly state variations of “They think that I think that they will
do <X>”. In level-0 examples, one provides examples of label salience, one provides
payoff salience, and two provides neither label nor payoff salience (two original exam-
ples). Level-1 examples consist of three cases of label salience and one case of payoff

salience. For levels 2 and 3, two cases for each type of salience are provided. One of
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the level-0 example is explicitly for the X-Y game, and one for for the Pie game (the
other two example are generic. Two of the level-1 examples are for the X-Y game, one
for the Pie game, and one that can be applicable to either game. For levels 2 and 3, one
example is for each game and two examples can be applicable to either game. Each
example is followed by information on level-0 belief, label salience, payoff salience,

and level classification.

C.5.4. Multi-label Classification

Given that the benchmark classifications for levels of thinking are defined as an inter-
val, with a lower and an upper bound across six potential levels in any given instance
(message), the model’s task is a multi-class, multi-label classification. In this frame-
work, a given instance can be classified as positive under multiple classes. This opens
up the possibility for a classification to be partially correct. A measurement that re-
quires an exact match with the actual interval might overlook this partial correctness
and is therefore considered a harsh metric (Sorower, 2010). A more nuanced accuracy
metric commonly used in multi-label classification is the ratio of correctly predicted
labels to the total number of labels—both predicted and actual—averaged across all
instances (Godbole and Sarawagi, 2004). This measurement is also referred to in the
literature as the Intersection over Union (IoU) metric or the Jaccard Index (Miiller et
al., 2022). Although IoU can be calculated for every class and averaged (either macro
or weighted), this approach has been criticised for not adequately addressing correla-
tions among different classes. Therefore, to assess the classification performance of
our models, we have chosen to employ the instance-based accuracy metric as intro-
duced by Godbole and Sarawagi (2004).

C.5.5. Additional Results

To classify the level of strategic thinking, both human annotators and the model must
first determine whether the message exhibits any form of salience (label or payoff),
and if so, identify its type. Table S13 reports the accuracy of salience classification—
both label and payoff—alongside the level classification results already discussed in
the main text for comparison. GPT-3.5 performs poorly on salience detection, with
most of the accuracy scores falling below 60%. GPT-4 consistently outperforms GPT-
3.5 across all dimensions. For both models, the highest accuracy is typically achieved
when n-shot prompting is combined with 0-shot-CoT prompting.

Table S14 reports the L;; results presented in the main text for reference in the rows
labelled 0-shot and 5-shot. The row labelled 16-shot corresponds to the O, prompt,
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Figure S19: L;; - Prompt O - Part 1

# General Task
- Evaluate player’s message from a specific coordination game to identify their decision-process and to
classify their level of strategic thinking.

# Role Persona
- Act as a behavioral economist specialized in coordination games, decision salience and text analysis.

# Context

## Game Mechanics

- Subjects (players) participate in an experiment where they play a coordination game.

- Players are assigned into teams of two.

- Each team is matched with another team to play a series of coordination games where the teams try to
coordinate on a specific alternative.

- If both teams pick the same alternative, each team is rewarded with a payoff. Otherwise, neither
team receives any payoff.

— Each player sends a suggested decision and a justifying message to their teammate.

— Coordination game is not played within the team members but between the two teams.

- There is no communication between the teams.

- Payoffs are represented in currency called Taler.

- 1 Taler = 40 cents (ct).

— Each player plays a series of 8 (rounds of) coordination games, split between *X-Yx games and *Piex
games .

## Coordination Games

— Payoff tables for each variation of each game is represented below.

- In each payoff table, ‘d‘ represents decision taken, ‘ml‘ represents payoff of team 1, and ‘m2‘
represents payoff of team 2.

— Payoff tables only represent the cases where both teams match in the given decision ‘d‘, if teams’
decisions do not match, each team receives 0 Taler.

### Pie Game

- Payoffs are displayed on a pie chart that is divided into three equally sized segments.
- Top left segment is labeled as ‘$°'.

- Top right segment is labeled as ‘“#°'.

- Top segments are shaded in gray.

— Bottom segment is labeled as ‘S' and is highlighted in white.

— There are 4 payoff variations labeled as S1, S2, AM2 and AM4.

#4444 Sl

|5 6 |

| 6, 5 |
| B (8) | 6, 5
#4444 AM4
| d |wl, w2|
| === | === |
'L (%) | 6 7
'R (#) | 7, 6
B (S) | 7,5

### X-Y Game

- Alternatives are displayed in two consecutive lines.

- Alternative ‘X' is displayed on the first line.

- Alternative ‘Y' is displayed on the second line.

- There are 4 payoff variations labeled as SL, ASL, AML and ALL.

#### SL

| d |71, 72 |
[=== === |
| X 15 5

'Yy | 5 5
##44# ASL

| d |71, w®2 |
[ === === |
| X | 5, 5.1 |
'Y | 5.1, 5 |
#### AML

| d |71, w2 |
[ === === |
I X1 5 6

'Yy | 6 5
#4#4 ALL

| d |71, w2 |
[ === === |
| X | 5 10

[ Yy | 10, 5
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Figure S20: L;; - Prompt O - Part 2

## Salience

- Label salience: players may react to the framing of alternatives.

— Payoff salience: Players may react to the payoff differences of alternatives

## Level-k Model

- A level-k player performs k many iterative best responses and always starts its iterative reasoning
from his level-0 belief. This starting point is called the level-0 belief of the level-k player.

— Level-0 belief is the belief of the level-k player on how the level-0 player will potentially play
the game.

— A level-0 player picks an alternative for non-strategic, instinctive reasons such as payoff or label
salience.

- A level-0 player does not best respond to other players potential actions.

- A level-0 player may be randomly choosing or purely guessing an action.

- A level-0 player may misunderstand the game structure.

— A level-1 player assumes that the other team consists of level-0 players and best responds based on
his level-0 belief to these level-0 players.

- A level-k (k>1) player recognizes the possibility that the other team may consist of level-(k-1)
players.

- A level-k player assumes that the level-(k-1) players assume he (the level-k player) is a level-(k-2)
player.

## Level-0 Belief

— Level-0 belief of a player reasoning on an odd level (level 1,3 or 5) is always with respect to how a
player of the opposite side intuitively reacts to the framing (label or payoff salience).

- Level-0 belief of a player reasoning on an even level (level 2 or 4) is always with respect to what
the opposite type believes about the own type’s intuitive reaction (label or payoff salience).

## Lower bound

— The minimum level of reasoning that the message clearly exhibits.

## Upper bound

— The maximum level of reasoning that can be inferred from the message.

# Classification Tasks
— Classify player’s label or payoff salience (if any).
— Classify lower and upper bounds for the player’s level of reasoning.

# Classification Coding

## Label Salience

### X-Y Game

— Code as ‘X' if player’s label salience is "prefers X over Y"

- Code as ‘Y' if player’s label salience is "prefers Y over X"

- Code as ‘~ ' if player’s label salience is "indifferent across payoffs"
— Code as ‘no‘ if the player does not exhibit payoff salience.

### Pie Game

- Code as ‘$' if player’s label salience is "prefers $"

- Code as ‘#' if player’s label salience is "prefers #"

- Code as ‘§' if player’s label salience is "prefers §"

- Code as ‘~' if player’s label salience is "indifferent across labels"
— Code as '‘no‘ if the player does not exhibit label salience.

## Payoff Salience

— Code as ‘H' if player’s payoff salience is "prefers high payoffs"

— Code as ‘L' if player’s payoff salience is "prefers low payoffs"

— Code as ‘~ ' if player’s payoff salience is "indifferent across payoffs"
— Code as ‘no‘ if the player does not exhibit payoff salience.

## Upper and Lower Bounds

-0,1,2,3,4 or 5.

\

# Examples (Only used in m-shot treatments)

- "Well, it’s a pure guess" (Level-0 belief: none, Label Salience: none, Payoff Salience: none,
Level: 0)

— "There are no arguments. Simply choose any." (Level-0 belief: none, Label Salience: none, Payoff
Salience: none, Level: 0)

— "They are probably picking X, so we do as well" (Level-0 belief: X, Label Salience: X, Payoff
Salience: none, Level: 1)

- "The other team would naturally go for the visually distinctive bottom slice" (Level-0 belief: AS,
Label Salience: AS, Payoff Salience: none, Level: 1)

— "The other team may think we are most attracted to the alternative with the highest payoff. 1In
order to coordinate our behavior, we should also choose the slice." (Level-0 belief: - high payoff

Label Salience: none, Payoff Salience: high payoff, Level: 2)

# Input Format
Team:
Game :
Decision:
Message:

# Constraint
— Follow the below output format

# Output Format
Label Salience:
Payoff Salience:
Lower Bound:
Upper Bound:

which includes 11 additional examples. As shown in the table, these additional exam-
ples substantially improved GPT-3.5’s performance. For GPT-4, the effect was mixed:

accuracy decreased by 2 percentage points in the no-CoT condition but increased by 2
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Figure S21: L;; - Prompt O - Extended Examples

# Examples (Only used in m-shot treatments)

- "Well, it’s a pure guess" (Level-0 belief: none, Label salience: no, Payoff salience: no, Level:
0

- "There are no arguments. Simply choose any." (Level-0 belief: none, Label Salience: none, Payoff
Salience: none, Level: 0)

- "AS§ is highlighted in white, hence AS" (Level-0 belief: AS, Label salience: AS, Payoff salience:
no, Level: 0)

- "Y provides a higher payoff, let’s go X" (Level-0 belief: high payoff, Label salience: no, Payoff
salience: higher payoff, Level: 0)

— "They are probably picking X, so we do as we as well" (Level-0 belief: X, Label salience: X, Payoff

salience: no, Level: 1)

- "The other team would naturally go for the visually distinctive bottom slice" (Level-0 belief: A4S,
Label salience: AS, Payoff salience: no, Considers other team’s behavior, Level: 1)

- "X is first, let’s pick X. And other team may think the same way." (Level-0 belief: X, Label
salience: X, Payoff salience: no, Level: 1)

— "Other team may want to the high payoff for themselves, let’s coordinate with them and pick the
higher payoff for them (which is the lower payoff for us)." (Level-0 belief: high payoff, Label
salience: no, Payoff salience: high payoff, Level: 1)

— "The other team may think we are most attracted to the alternative with the highest payoff. In order
to coordinate our behavior, we should also choose the slice." (Level-0 belief: high payoff, Label
salience: no, Payoff salience: high payoff, Level: 2)

- "Others will think we go for top. So let’s go for top." (Level-0 belief: X, Label salience: X,

Payoff salience: no, Level 2)

- "The other team will think we pick the highlighted segment. So we should coordinate and pick AS§"
(Level-0 belief: AS, Label salience: AS, Payoff salience: no, Level: 2)

— "Other team may want to the high payoff for themselves. But they may assume the same thing about
us and pick the alternative that gives us the higher payoff. So let’s coordinate with them and pick

the higher payoff for us (which is the lower payoff for them)." (Level-0 belief: high payoff, Label
salience: no, Payoff salience: higher payoff, Level: 2)

— "Others will think that we think that they will go for top. So let’s go for top." (Level-0 belief:
X, Label salience: X, Payoff salience: no, Level: 3)

— "The other team will think that we think that they pick the highlighted segment. So we should
coordinate and pick AS" (Level-0 belief: AS, Label salience: A4S, Payoff salience: no, Level: 3)

— "Other team may think that we think that they want the high payoff for themselves, let’s coordinate
with them and pick the higher payoff for them." (Level-0 belief: high payoff, Label salience: no,

Payoff salience: higher payoff, Level: 3)

- "Other team may think that we want the high payoff for ourself. But they may assume the same thing

about us and pick the alternative that gives us the higher payoff for themselves. So let’s coordinate
with them and pick the higher payoff for them." (Level-0 belief: higher payoff, Label salience: no,

Payoff salience: higher payoff, Level: 3)

Payoff Salience Label Salience Level

GPT-35 © 36 42 52
CoT 49 59 55
n-shot 59 46 58
CoT & n-shot 54 64 58

GPT-4 1) 59 44 66
CoT 63 79 67
n-shot 60 78 71
CoT & n-shot 70 85 71

Table S13: Salience Classification Accuracy (in %), highest values in bold.

percentage points when CoT prompting was used.

Table S15 reports salience classification accuracy for prompt O, which includes 11
additional examples (16-shot total) in both the no-CoT and CoT conditions. As shown
in the table, these additional examples substantially improve classification accuracy
for both types of salience under GPT-3.5. In contrast, the effect on GPT-4 is limited:
with the exception of an 11-percentage-point gain in payoff salience accuracy under

the no-CoT condition, the additional examples produce either no change or only minor,
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no-CoT CoT

GPT-3.5 O0-shot 52 55
H-shot 58 58
16-shot 63 65

GPT-4  0O-shot 66 67

5-shot 71 71
16-shot 69 73

Table S14: Level Classification Accuracy (in %), highest values in bold.

mixed effects.

Payoff Salience Label Salience

GPT-3.5 no-CoT 73 114 47 41
CoT 66 +12 68 4
GPT-4 no-CoT 71 +11 78 0
CoT 69 -1 86 +1

Table S15: 16-shot - Salience Classification Accuracy (in %) and change in accuracy
(in percentage points). Change in accuracy compared to 5-shot (in percentage points).
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